
Computer simulations of supercooled polymer melts in the bulk and in confined geometry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 R851

(http://iopscience.iop.org/0953-8984/17/32/R02)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 05:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/32
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) R851–R953 doi:10.1088/0953-8984/17/32/R02

TOPICAL REVIEW

Computer simulations of supercooled polymer melts
in the bulk and in confined geometry

J Baschnagel1 and F Varnik2

1 Institut Charles Sadron, 6 rue Boussingault, 67083 Strasbourg Cedex, France
2 Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany

E-mail: baschnag@ics.u-strasbg.fr and varnik@mpie.de

Received 6 June 2005
Published 29 July 2005
Online at stacks.iop.org/JPhysCM/17/R851

Abstract
We survey results of computer simulations for the structure and dynamics of
supercooled polymer melts and films. Our survey is mainly concerned with
features of a coarse grained polymer model—a bead–spring model—in the
temperature regime above the critical glass temperature Tc of the ideal mode-
coupling theory (MCT). We divide our discussion into two parts: a part devoted
to bulk properties and a part dealing with thin films. The discussion of the bulk
properties focuses on two aspects: a comparison of the simulation results with
MCT and an analysis of dynamic heterogeneities. We explain in detail how
the analyses are performed and what results may be obtained, and we critically
assess their strengths and weaknesses. In discussing the application of MCT we
also present first results of a quantitative comparison which does not rely on fits,
but exploits static input from the simulation to predict the relaxation dynamics.
The second part of this review is devoted to extensions of the simulations from
the bulk to thin films. We explore in detail the influence of the boundary
condition, imposed by smooth or rough walls, on the structure and dynamics of
the polymer melt. Geometric confinement is found to shift the glass transition
temperature Tg (or Tc in our case) relative to the bulk. We compare our and
other simulation results for the Tg shift with experimental data, briefly survey
some theoretical ideas for explaining these shifts and discuss related simulation
work on the glass transition of confined liquids. Finally, we also present some
technical details of how to perform fits to MCT and give a brief introduction to
another approach to the glass transition based on the potential energy landscape
of a liquid.
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1. Introduction

Polymer melts are bulk liquids consisting of macromolecules [1]. In the simplest case of
linear homopolymers each macromolecule contains N monomeric repeat units of the same
type, which are connected to form a chain. The chain length N may be large. A typical range
in experiments is 103 � N � 105. This implies that the average size of a polymer, measured
e.g. by the radius of gyration Rg [2, 3], varies between Rg ∼ 100 Å and Rg ∼ 1000 Å. The
size of a chain thus exceeds that of a monomer (∼1 Å) by several orders of magnitude.

These different length scales are reflected in the particular features of a polymer melt. In the
melt the monomers pack densely, leading to an amorphous short range order on a local scale and
to an overall low compressibility of the melt. Both features are characteristic of the liquid state.
Qualitatively, the collective structure of the melt thus agrees with that of nonpolymeric liquids.
Additional features, however, occur if one considers the scale of a chain. A long polymer in a
(three-dimensional) melt is not a compact, but a self-similar object [3–5]. It possesses a fractal
‘open’ structure which allows other chains to penetrate into the volume defined by its radius of
gyration. On average, a polymer experiences

√
N intermolecular contacts with other chains,

a huge number in the large N limit. This strong interpenetration of the chains has important
consequences. For instance, intrachain excluded volume interactions, which would swell the
polymer in dilute solution, are screened by neighbouring chains [2–4, 6–8]. A polymer in
a melt thus behaves on large scales as if it were a random coil, implying that its radius of
gyration scales with chain length like Rg ∼ √

N . Furthermore, the interpenetration of the
chains creates a temporary network of topological constraints [2–4, 9]. These entanglements
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Figure 1. Volume per monomer v versus temperature T for a polymer melt which tends to
crystallize. In the high T liquid phase the chains have configurations that are random coil-like
and the structure of the melt is amorphous. The amorphous structure is preserved when the melt
is cooled rapidly enough to avoid crystallization. Then, it undergoes a glass transition at Tg. For
slower cooling the melt transforms into a semicrystalline material at the crystallization temperature
Tcrys. In the semicrystalline state, sections of folded chains order in lamellar sheets that coexist with
amorphous regions. On heating (dashed grey line) the crystal melts at Tm > Tcrys. This hysteresis
is characteristic of first-order phase transitions. The volume–temperature diagram shown is a
result of molecular dynamics simulations for a model of poly(vinyl alcohol) (courtesy of H Meyer;
see [10, 11] for further details).

greatly slow down the chain dynamics and render the melt in general very viscous compared
to low molecular weight liquids.

Polymeric solids: crystallization and glass transition. Polymeric solids are either glassy
or semicrystalline (figure 1) [12]. Semicrystalline polymers contain both amorphous and
crystalline regions. The crystalline regions consist of lamellar sheets in which the polymers
are folded back and forth so that sections of chains can align parallel to each other. The sheets
twist and branch as they grow outward from a nucleus into spherulitic structures [12]. This
hierarchy of morphological features, ranging from the lamellar ordering of the chains (∼10 nm)
to the macroscopic packing of the spherulites (100 µm and larger), reflects the complexity of
the underlying crystallization process which is not yet fully understood [13–16].

The ability to form crystal crucially depends on the microstructure of the chains.
Only polymers with regular configurations, e.g. isotatic or syndiotatic orientations of the
sidegroups [3] or chains without sidegroups, polyethylene being the prime example, can align
parallel to each other so as to pack into crystalline lamellae. However, even in these favourable
cases full crystallization is almost never achieved (see e.g. [14]).

Due to this intrinsic difficulty of crystal formation, polymer melts are in general good
glass formers [17–19]. Either they can be readily supercooled (figure 1) or, due to the irregular
configuration of the chains, a crystalline phase does not exist at all. There are numerous
examples for the latter case. They comprise homopolymers with an atactic orientation
of (bulky) sidegroups, e.g. atactic polystyrene, or random copolymers, such as cis–trans
polybutadiene, in which monomers, having the same chemical composition, but different
microstructures (cis–trans configuration of butadiene), are randomly concatenated. These
polymeric glass formers exhibit features that are also prevalent in other (intermediate and
fragile) glass-forming liquids [18, 19]. For instance, as the melt is cooled from the liquid state
toward the glass transition temperature Tg, it displays a non-Arrhenius increase of all measured
structural relaxation times. In proportion to this huge effect on the dynamics, the amorphous
structure of the melt only changes very little on cooling. This discrepancy poses a formidable
scientific problem. Understanding its molecular origin represents an important issue in the
research on the glass transition [19–22].
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Scope of the article. The present article reviews recent simulation results for glass-forming
polymer melts. Even within this scope there are several respects in which our discussion will
be limited. We adopt the view that the glass transition is approached by slow cooling from the
liquid. ‘Slow cooling’ means that the melt is always in thermal equilibrium. This condition
restricts our attention to temperatures above the critical glass temperature Tc of mode-coupling
theory (MCT) [21–24]. Thus, we do not discuss interesting sub-Tg phenomena, such as physical
ageing [17, 18] (see also [25] for a topical review) or the response of polymeric glasses
to external deformation fields [26, 27]. Furthermore, our survey will be mainly concerned
with molecular dynamics (MD) studies of a bead–spring model of a polymer melt. This
model—a representative of the class of coarse grained generic simulation models [28]—may be
considered as an archetypal model for polymer solutions and melts [29, 30]. Work on realistic
polymer models will only be touched upon briefly in comparison to the results presented here.
Comprehensive reports of these realistic modelling approaches may be found e.g. in [31, 32].
Finally, our discussion, which represents an update on results reviewed in [33, 34], has surely
devoted disproportionately much space to our own contributions. This is mainly because we
hope to explain them best.

Outline. We have chosen to organize our survey as follows. We begin (section 2) by compiling
some information on polymer modelling and technical aspects of the simulation. In particular,
we introduce the coarse grained model that will mainly be discussed in the next two sections:
one devoted to the features of the bulk (section 3), the other to those of thin films (section 4).

In section 3, our discussion will revolve around two aspects,a comparison of the simulation
results with MCT (section 3.3) and an analysis of dynamic heterogeneities emerging in the
cold melt above Tc (section 3.4). We explain how the analyses are carried out and what results
may be obtained from them, and we assess their strengths and weaknesses as we go. Especially
for mode-coupling theory, there are some technical details of the quantitative analysis which
are not essential for the logic of the text but may be beneficial if one wants to apply the theory.
Accordingly they are addressed separately, in appendix A.

There is another approach to the properties of glass-forming liquids, based on the features
of the potential energy landscape. This approach is extensively pursued in simulation studies
at present, and we felt that it should be included somewhere in this article, although it was not
applied to our polymer model. Appendix B provides a brief introduction.

The second part of this review deals with the extension of the simulations from the bulk
to thin polymer films. Section 4 identifies and explores what appears to be an important issue
here—the influence of the boundary condition, imposed by the confining walls, on the structural
(section 4.2) and dynamic properties (section 4.3) of the melt. Geometric confinement is
generically found to shift Tg (or Tc in our case) relative to that of the bulk. We compare our
and other simulation results for the Tg shift with experimental data, give a brief survey of some
recent theoretical ideas for explaining these shifts (section 4.3.2) and discuss related simulation
work on the glass transition of confined liquids (section 4.4).

Finally, section 5 provides a synopsis of the results presented.

2. Simulation of glass-forming polymers: models and computational aspects

This section aims at providing an introduction to computer simulations of glass-forming
polymer melts. Certainly, our presentation will not be exhaustive, neither as regards the
modelling of polymer melts nor as regards specific computational aspects associated with
glass-forming systems in general. There are, however, excellent reviews on these topics,
e.g. [29, 35–38], as far as the modelling of polymer melts is concerned, or [39, 40] for problems
centred around the simulation of glass-forming systems.
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Figure 2. Schematic representation of different levels one may utilize to model polymers. The
quantum level takes account of the electrons to calculate the interactions between the nuclei ‘on
the go’. At present, using such an approach to simulate polymer melts is computationally too
demanding. Less demanding and currently feasible are simulations at the atomistic level [32].
Here, the electronic degrees of freedom are replaced by a force field. A force field is the total
potential energy resulting from the interactions of all atoms (‘explicit atom model’) or from the
interactions of spherical sites comprising several atoms (e.g. CH2; the ‘united atom model’). In the
middle figure, two united atoms are indicated by the shaded circles. Typically, a force field contains
contributions from bonded and nonbonded interactions. Bonded interactions comprise potentials
for the bond length (nearest neighbour), the bond angle θ (second-nearest neighbour) and the
torsional angle φ (third-nearest neighbour). Between neighbours (atoms or united atoms) that are
further apart along the backbone of the chain nonbonded interactions are taken into account. For
uncharged polymers they are often modelled by a Lennard-Jones (LJ) potential. Computationally
still less demanding than atomistic models are simulations at the coarse grained level. Here, a
monomer is associated with a spherical site and the realistic potentials are replaced by simpler
ones. This simplification, if carried out systematically, can lead to coarse grained models for a
specific polymer—recent approaches have been reviewed in [35, 36, 41]. Otherwise it leads to
generic models, such as the model described in section 2.2.

2.1. Coarse graining: from atomistic to generic polymer models

In any material, the interaction potential results from the adaptation of the electronic degrees of
freedom to the positions of the nuclei. It may thus appear natural to model polymer melts via
the Car–Parrinello method [42]. This method is a molecular dynamics (MD) technique [43, 44]
which allows the electrons to adiabatically follow the motion of the nuclei. It thereby replicates
authentically the energy landscape that the nuclei feel at any instant of their motion. However,
given the current computer power this authenticity carries a price: the inclusion of the electrons
in the simulation restricts the system size to about 100 nuclei and requires a time step of
∼10−17 s. As typically ∼108 time steps may be performed in a long run, such an ab initio
approach could simulate a melt of 10 chains with N = 10 for about 1 ns. This time barely
suffices to equilibrate the system at high temperature in the liquid state [38, 45].

Thus, the modelling of polymer melts nowadays still necessitates simplifications. These
simplifications generally invoke some kind of coarse-graining procedure. That is, one forgoes
the explicit treatment of fast degrees of freedom and incorporates them in effective potentials.
There are several levels to this [32, 36, 41].

Atomistic models. The preceding discussion suggests that a compulsory simplification (at
present) should consist in replacing the electronic degrees of freedom by empirical potentials
for the bond lengths, the bond angles, the torsional angles and the nonbonded interactions
between distant monomers along the chain (‘quantum level → atomistic level’; see figure 2).
This step introduces a ‘force field’, i.e., the form of the potentials is postulated and the
corresponding parameters (e.g. equilibrium bond length, force constants) are determined from
quantum chemical calculations and experiments [32, 41].
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Figure 3. Simulation results for cis–trans 1,4-polybutadiene (adapted from [53], with permission).
Main panel: collective static structure factor, S(q) (see equation (11)), and single-chain structure
factor, w(q) (see equation (12)), versus the modulus of the wavevector q at T = 273 K. Two
united atom models are compared: a chemically realistic model (CRC) and the same model but
without torsional potential (FRC). The vertical arrows indicate the values of q associated with the
radius of gyration Rg and with the first maximum of S(q) (‘amorphous halo’). The maximum
occurs at q∗ � 1.47 Å−1. In real space, this value would correspond to an intermonomer distance
of ≈4.3 Å which is roughly compatible with the average Lennard-Jones diameter of the model
(σ ≈ 3.8 Å). Inset: mean square displacement g0(t), averaged over all monomers, versus time for
the CRC and FRC models at T = 273 K. The horizontal dotted line indicates the radius of gyration
R2

g = 218 Å2 (which is found to be the same for the two models [54]).

Throughout the past decades several such force fields have been proposed for both explicit
atom models and united atom models. An explicit atom model treats every atom present in
Nature as a separate interaction site, whereas a united atom model lumps a small number of
real atoms together into one site [32, 36, 41]. Typical united atoms are CH, CH2 and CH3.
The reduction of force centres translates into the computational advantage of allowing longer
simulation times. With a time step of ∼10−15 s—compared to ∼10−17 s for the Car–Parrinello
method—a few thousand united atoms can be simulated over a time lapse of several 100 ns,
about an order of magnitude longer than for an explicit atom simulation of comparable system
size.

Both explicit atom models and united atom models have been utilized in the study of
glass-forming polymers (see e.g. [31, 46] for reviews on older work). Current examples include
polyisoprene (explicit atom model; [47, 48]), atactic polystyrene (united atom model; [49–51])
and cis–trans 1,4-polybutadiene (united and explicit atom models; [32, 52–56]). Certainly, the
ultimate objective of these modelling efforts is that the simulation results lend themselves to a
quantitative comparison with experiments. Such a comparison may, however, require a careful
fine-tuning of the force field. For the family of neutral hydrocarbon polymers the optimization
of the torsional potential appears particularly crucial. Not only the position and the relative
height of the minima, but also the barriers between them should be accurately determined,
as local relaxation processes, involving transitions between the minima, are exponentially
sensitive to them. In extreme cases, imprecise barrier heights may seriously affect the dynamics
while leaving structural features of the melt unaltered.

Such an extreme example is shown in figure 3. The figure compares simulation results for
two models of a polybutadiene melt [53, 54]: a carefully validated united atom model which
reproduces the experimentally found structure and dynamics of the melt, and the same model
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with the torsional potential switched off. Apparently, suppression of the torsional potential
has no influence on the structure, but considerably accelerates the monomer dynamics.

This example demonstrates that different potentials may lead to a realistic representation
of structural properties, but to diverging predictions for the dynamics. Such an observation is
not limited to polymers; it was also made e.g. for amorphous SiO2 [40]. This suggests that the
design of a chemically realistic model, aiming at a parameter-free comparison between simula-
tion and experiment, should involve information about both structural and dynamic properties.

Generic models. Atomistic simulations of carefully designed models are the best way to
explore the properties of specific polymers, including the glass transition. However, the strong
slowing down of the dynamics on cooling, which eventually leads to the freezing in of an
amorphous state, is observed for all glass-forming polymers, irrespective of their chemical
structure. If the focus is on these general features, it appears permissible to forego fast degrees
of freedom (bond length and bond angle vibrations, etc) in favour of a coarse grained model
(‘atomistic level → coarse grained level’; see figure 2). A special type of coarse grained
models is constituted by so-called ‘generic models’ [36]. A generic model only retains the
most basic features of polymer chains. For (uncharged) linear polymers these features are
presumed to be chain connectivity, excluded volume interactions and, possibly, monomer–
monomer attractions and/or some stiffness along the chain backbone. Various such generic
models have been studied in the literature (for reviews see [28, 38, 57]). In the following we
present one of these models, which was used in our simulations [58–73], in more detail.

2.2. The Bennemann model: a bead–spring model for glass-forming polymer melts

In 1985 [74] Grest and Kremer proposed a versatile bead–spring model for the simulation
of polymer systems. The ‘Kremer–Grest’ model has ever since been deployed to
investigate numerous problems in polymer physics, including relaxation processes in polymer
solutions [75] and melts [30, 76, 77], the behaviour of polymer brushes [78, 79] or rheological
properties of complex fluids [29], just to name a few. These diverse successful applications
prompted Bennemann et al [58] to suggest a variant of the model for the study of glass-forming
polymer melts.

The Bennemann model. In this model, the chains contain N identical monomers of mass
m. All monomers, bonded and nonbonded ones, interact through a truncated and shifted
Lennard-Jones (LJ) potential

U ts
LJ(r) =

{
4ε[(σ/r)12 − (σ/r)6] + C(rcut) for r � rcut,

0 else.
(1)

The parameter C(rcut) = 127/4096 ε shifts the potential to zero at the cut-off distance
rcut = 2rmin where rmin = 21/6σ is the minimum of equation (1). The choice for rcut is
motivated by the wish to work with a potential that is as short ranged as possible3 while still
including the major part of the attractive van der Waals interaction. Even though attractive

3 Computational expediency suggests working with a short range potential because the number of neighbours ni
with which a particle interacts scales with the cut-off distance as ni ∝ r3

cut [84, 85]. So one expects a simulation
of the Kremer–Grest model, where rcut = 21/6, to be about eight times faster than that of the Bennemann model
(rcut = 2 × 21/6 ≈ 2.25). In fact, our experience confirms this expectation (the speed-up factor for the Kremer–Grest
model is rather 5 than 8). This computational advantage was presumably one of the motivations for using the Kremer–
Grest model also to study supercooled polymer melts [338]. (In this case, however, the glass transition temperature
appears to be distinctly smaller than in the Bennemann model, which outweighs the speed-up factor mentioned above.)
On the other hand, the cut-off distance of the Bennemann model is of course not necessarily the only possible choice.
The slightly larger (classical [84, 85]) value rcut = 2.5 was used e.g. in [99, 121].
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interactions are not expected to appreciably affect the local structure in a dense melt4, they
may have a significant effect on thermodynamic properties. Furthermore, they are important
for simulations of e.g. the phase behaviour of polymer solutions [80, 81], thin films with a
film–air interface [82, 83] and crazing in polymer glasses [26, 27]. The idea of Bennemann
et al was to suggest a model which could be employed to explore various physical situations
without the need to be modified.

In addition to the LJ potential, nearest neighbour monomers along the chain interact
through a FENE (finitely extendible nonlinear elastic) potential5

UFENE(r) = −1

2
k R2

0 ln

[
1 −

(
r

R0

)2]
, R0 = 1.5σ, k = 30ε

σ 2
. (2)

Equation (2) diverges logarithmically if r → R0 (‘finite extensibility’) and vanishes
parabolically close to the origin (‘elastic behaviour’). So the FENE potential alone does not
prevent monomers from overlapping. Local excluded volume is imposed by the LJ interaction.
The superposition of the FENE and the LJ potentials yields a steep effective bond potential
with a minimum at rb = 0.9606 (see e.g. [71]).

Lennard-Jones units and approximate mapping to real units. The parameters of equation (1)
define the characteristic scales of the melt: ε the energy scale, σ the length scale and
τLJ = (mσ 2/ε)1/2 the timescale. In the following, we utilize LJ units. That is, ε = 1,
σ = 1 and m = 1. Furthermore, temperature is measured in units of ε/kB with the Boltzmann
constant kB = 1.

Although reduced units are commonly employed in simulations and are of technical
advantage [84, 85], it might still be interesting to obtain a feeling for how they translate
into physical units. Such a mapping of the Bennemann model to real systems has recently
been carried out by Virnau et al [81, 86] and by Paul and Smith [32]. Virnau et al explored the
phase separation kinetics of a mixture of hexadecane (C16H34) and carbon dioxide (CO2). By
identifying the critical point of the liquid–gas transition in hexadecane with that of bead–spring
chains containing five monomers they found σ � 4.5 × 10−10 m and ε � 5.8 × 10−21J. Paul
and Smith compared the dynamics of chemically realistic models for nonentangled melts of
polyethylene and polybutadiene with that of the Bennemann model. This comparison allowed
them to convert τLJ to seconds. The result is τLJ � 2.1 × 10−11s. These values for σ , ε

and τLJ are compatible with the estimates obtained by Kremer and Grest when comparing the
dynamics of entangled bead–spring melts to those of real polymers (see table III of [74]; see
also section 4.7 of [29] for further discussion).

Choice of the chain length. In polymer glass simulations the chain length N is usually chosen
as a compromise between two opposing wishes: on the one hand, N should be sufficiently
large to separate the scales of the monomer and the chain size so that polymer-specific effects
(or at least the onset thereof) become observable. On the other hand, computational expedience
suggests working with short chains. Because the simulations aim at following the increase
of the monomeric relaxation time τ0 with decreasing temperature over as many decades as
possible, slow relaxation processes, already present at high T due to entanglements, should

4 In glass-forming colloidal suspensions, however, attractions of quite short range and moderate-to-high strength
may influence the local packing. Depending on the external control parameters this can increase the density where
the glass transition occurs, or lead to gelation phenomena [364–366].
5 According to [74], the values given in equation (2) for R0 and k prevent the bonds from crossing each other in the
course of the simulation. This imposes topological constraints [2] which ultimately lead to reptation-like dynamics
in the limit of large chain length [74, 77].
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be avoided. Thus, the chain length should be smaller (or at least not much larger) than the
entanglement length Ne. Extensive studies of the Kremer–Grest model show that Ne ≈ 32.6

Shorter chains exhibit Rouse-like dynamics:

τN = τ0 N≈2 . (3)

As the Bennemann model is expected to have a similar Ne, the chain length N = 10 was
proposed as a possible compromise [58]. This chain length was used in all subsequent studies
pertaining to glass-forming polymer melts [58–73].

2.3. Extending the model to thin films: smooth and rough walls

A ‘polymer film’ is a system in which a polymer melt is geometrically confined in one spatial
direction. The confinement can result from two polymer–air interfaces (‘freely standing films’),
from two inequivalent interfaces (e.g. polymer–air and polymer–substrate) or from enclosing
the melt between two substrates. It is the latter situation that we will be mainly concerned with
here.

Even though real substrates can have a complex structure, it appears natural in the spirit of
the polymer models discussed above to treat the substrate also at a generic level. One obvious
feature is its impenetrability. So a minimal model must at least respect monomer–substrate
excluded volume interactions. Further generic features could be some surface roughness and
adhesive power. On the basis of this reasoning, simulations often model the substrate as a
crystal [87, 88] made of particles that interact with each other and with the monomers through
LJ potentials. If we adopt that model, two limiting cases may be distinguished:

(i) Smooth and structureless walls. The presence of the substrate leads us naturally to
consider two directions: the direction parallel to the wall (s = (x, y)) and the z direction
perpendicular to it (figure 4). So the interaction potential between the monomers and the
substrate is in general a function Uw(r) = Uw(s, z). If our interest is restricted to the
average potential which the substrate exerts on a monomer, we may treat the wall as a
continuum and integrate over the parallel (x, y) directions and the vertical direction up to
position z. Carrying out this calculation for the LJ potential yields

Uw(z) = εw

[(σ

z

)9 − fw

(σ

z

)3
]
, (4)

where εw denotes the monomer–wall interaction energy and fw is a constant. While
the second attractive term is important if one wants to study polymer adsorption [89] or
wetting phenomena [90, 91], the first term of equation (4) suffices for imposing a geometric
confinement. This is the stance we adopted in most of the simulations on supercooled
polymer films [68–71, 73]: By choosing εw = ε and fw = 0 we introduce two smooth,
structureless and completely repulsive walls in the z direction. The walls are a distance
h apart (figure 4). We refer to h as the ‘film thickness’. In equation (4), the distance
coordinate is thus given by z = |zmonomer − zsmooth wall| with zsmooth wall = ±h/2, where
zmonomer is the coordinate of the monomer perpendicular to the wall.

(ii) Rough and crystalline walls. Rough walls may be implemented by restoring the first
crystalline layer. To this end, we chose [72] to tether the wall atoms to the sites of a
triangular lattice with harmonic springs (the ‘Tomlinson model’ [92]):

UT(r) = 1
2 kT(r − req)

2, kT = 100. (5)

6 The estimate Ne ≈ 32 results from an analysis of monomer mean square displacements [74, 77]. Another estimate
that is about twice as large may be derived from rheological data [77, 367, 368].
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Figure 4. Snapshot of a polymer film between rough walls (only 40 chains out of 200, containing
N = 10 monomers each, are shown). The walls consist of two parts: a layer of atoms tied to a
triangular lattice via equation (5) and a barrier modelled by the repulsive part of equation (4). The
barrier is indicated by solid lines on the opposite faces of the simulation box in the z direction.
In the lateral (x, y) directions, periodic boundary conditions are employed [84, 85]. The system
size in these directions is Lx = L y = 10.05, while the distance between the triangular lattice
planes is h = 20.9 The barrier walls are placed at zsmooth wall = ±(1 + h/2). In the case of a film
confined between smooth walls the crystalline layers are absent and the barrier walls are placed at
zsmooth wall = ±h/2. This figure is taken from [72].

(This figure is in colour only in the electronic version)

Here, req denotes the equilibrium position of an atom on the triangular lattice and kT the
spring constant7. The wall atoms are LJ particles that interact with each other and with the
monomers. The parameters (ε and σ ) for these interactions—wall–wall and monomer–
wall—are the same as in equation (1). We expect this choice to lead to a ‘stick boundary
condition’8.

7 The value kT = 100 is close to the force constant corresponding to the harmonic approximation of the LJ force in an
fcc lattice. This choice was motivated by a study of the pressure tensor in simple liquids [369]. On the other hand, the
Tomlinson model (equation (5)) appears to have an unrealistic feature. It allows a wall atom to vibrate, to some extent,
independently around its equilibrium position req. For instance, an up–down motion is possible without perturbing
the neighbours. In reality, one might, however, expect a compression at some position to also cause an indentation
in the local environment. So, displacements of neighbouring particles should be correlated. These correlations may
be taken into account in the so-called Frenkel–Kontorova–Tomlinson model [92]. However, it is not clear whether
these correlations are of crucial importance or not. For instance, reasonable results for the viscous flow of a polymer
melt can be obtained both with the Tomlinson model alone [370] and with the Tomlinson model supplemented with
excluded volume interactions between the wall atoms [72].
8 This expectation is motivated by the experience we gained from nonequilibrium MD simulations of shear flow in a
polymer melt (Bennemann model) [72] and in a binary LJ mixture (Kob–Andersen mixture) [371]. In [72], partial slip
at the crystalline wall was found at the monomer density ρm = 0.795 when the LJ parameters of the monomer–wall
interaction were the same as in the bulk (i.e., σmw = 1 and εmw = 1). To realize a ‘stick boundary condition’ at
ρm = 0.795 we took σmw ≈ 0.89 and εmw = 2. As σmw < σ and εmw > ε, the monomers can approach the wall
more closely than they could approach each other and they are attracted by the wall more strongly than they would
attract each other in the bulk. The combination of the two effects enhances the ability of the polymer melt to adapt
to the wall structure, and this leads to the ‘stick boundary condition’ [327, 370] (see also [93] for further details). A
similar adaptation to the wall structure should also be attainable for σmw = 1 and εmw = 1 when the monomer density
is high (i.e., ρm � 1). This is the case for the simulations discussed in section 4.3.3.
9 The simulation box for this (large) film thickness is not symmetric; we have h/Lx � 2. We explored the influence
of this asymmetry on the features of the films and ascertained that it is negligible—for both static and dynamic
properties—if h/Lx is not much larger than 2 [93]. Otherwise, there may be important finite size effects. For smooth
walls we found that the dynamics is accelerated in smaller systems, that is, in systems with h/Lx � 2. This result is
contrary to what has been observed in bulk simulations of e.g. LJ mixtures [208, 333], soft sphere mixtures [334] and
a model of silica [335, 336]. In the bulk, the dynamics (in the supercooled state) slows down with decreasing system
size. Certainly, more work has to be done to understand these asymmetry and finite size effects better.
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A monomer interacts not only with the first crystalline layer, but also with all deeper
layers of the wall. We represent this interaction with the repulsive part of equation (4). In
equation (4), the distance coordinate is now given by z = |zmonomer − zsmooth wall|. Here,
zsmooth wall = ±(1 + h/2); h denotes the distance between the crystalline layers on the left
and right sides of the system. The presence of this smooth wall behind the crystalline layer
has the extra benefit of supplying a barrier that renders the wall impenetrable (see [72, 93]
for further discussion).

Smooth or rough walls, of the types we have just discussed, are commonly employed in
simulations of confined liquids. These walls affect the local structure of the liquid in their
vicinity (cf section 4.2.1 and the end of section 4.3.3). If these perturbations should be
avoided, at least to a large extent, one has to adapt the structure of the walls to that of the
bulk liquid. A cunning way of tackling this problem consists in ‘building’ the walls from bulk
simulations [94]: first, a bulk liquid is equilibrated at a specific thermodynamic state point;
then, ‘amorphous’ walls are introduced by ‘freezing’ all particles outside of a volume of a given
geometry. Here, we are in principle at liberty to choose whatever geometry we like—spherical,
cylindrical, film etc. For simple liquids this procedure has an additional advantage. Since the
walls are inscribed in a previously equilibrated system, no further equilibration is needed after
their introduction [94]. For polymer melts, however, the situation can be more complicated,
due to chain connectivity. When freezing a portion of the melt we cannot prevent some chains
from participating in both the wall and fluid parts of the system. If a clear separation of the
two parts is desired, these chains must be ‘removed’; and this will in general require further
equilibration.

To construct such amorphous walls for polymer films we proceeded in the following way:

(iii) Rough and amorphous walls. We begin by generating an equilibrated configuration of
the bulk polymer melt at the desired thermodynamic state point. Then, we freeze all
monomers in two slices each having a thickness of three monomer diameters, one slice
at the edge of the simulation box and the other in the middle of the box. This choice
appears appropriate if one wants to construct walls whose structures are independent of
each other (if we utilized for the second wall e.g. the opposite edge of the simulation
box, a correlation between the walls would exist due to the periodic boundary conditions).
After this assignment of monomers to the walls there will be chains that have monomers
inside and outside of the slices; we now remove all monomers outside of the slices.
This provides us with two amorphous walls which are then inserted in place of the two
smooth walls—i.e., at ±h/2—in a previously equilibrated polymer film being confined
by the structureless walls described in point (i). (Additionally, as for the crystalline walls,
a smooth barrier wall is inserted at zsmooth wall = ±(3 + h/2).) Finally, the resulting
configuration is equilibrated.
One may think (or hope) that these amorphous walls would allow one to avoid the above-
mentioned structural changes due to confinement. Unfortunately, the present procedure
does not fully accomplish this goal (as we will see at the end of section 4.3.3). For example,
density oscillations are still observed; their amplitude, however, is much weaker than that
found near the crystalline walls.

2.4. Remarks on the simulation methodology

Imposing constant temperature and pressure. Molecular dynamics (MD) simulations
constitute a numerical scheme which integrates the classical equations of motion associated
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with a many-body potential. Therefore, the natural thermodynamic ensemble of MD is the
microcanonical NV E ensemble. (Here, N denotes the total number of particles, V the
volume of the system and E its total energy.) In many situations, it is however desirable
to switch to another ensemble. For instance, experiments are typically carried out at constant
temperature T and constant pressure p. This implies that the equations of motion must be
modified to allow for fluctuations of both E and V in response to the fixed temperature and
pressure.

Several efficient techniques have been developed to achieve this [84, 85]. The work
of [58–73] on which we will mainly focus in the following utilizes the Nosé–Hoover
thermostat [85, 95] and the Andersen–Hoover barostat [96, 97] (see [58, 65, 93] for more
details). Numerical evidence obtained from the Bennemann model in the bulk [58] and in thin
films [70] as well as theoretical arguments [98] demonstrate that simulations in the canonical
NV T ensemble using the Nosé–Hoover thermostat replicate the classical microcanonical
dynamics provided that the system size is large enough (total number of monomers larger than
a few hundred). By contrast, addition of the Andersen–Hoover barostat seems to engender
large volume fluctuations, particularly at low T [65] and for small film thicknesses [70], which
strongly perturb the relaxation dynamics of the melt. Therefore, the MD simulations were
performed in two steps: in a first step, the average volume corresponding to a prescribed
external pressure p (mainly p = 1) is determined; the second step fixes this volume and
continues the simulation in the canonical ensemble using the Nosé–Hoover thermostat only.
A similar procedure was also chosen in the recent work by Barbieri et al [99].

There is one further technical point about constant-pressure simulations which we want
to address now [68, 69]. In the bulk, the pressure is a scalar. In an inhomogeneous system,
however, it depends on the spatial direction and the position r where it is determined. Quite
generally, the pressure is thus a tensor function P(r) [100–102]. For a film in equilibrium we
can further specify this function. Exploiting the property that the film is isotropic in the lateral
x and y directions and using the condition of mechanical stability for a fluid at equilibrium,
one finds that only the diagonal elements of P are nonzero and given by [68, 100, 101]

Pxx (z) = Pyy(z) = PT(z) and Pzz(z) = PN = constant. (6)

The fact that the pressure profile is constant across the film suggests a simulation method
which equates PN to an imposed external pressure PN,ext = p. This mimics experiments
on thin films which are usually carried out at constant normal pressure. If PN is fixed,
the thermodynamically conjugate variable, the film thickness h, should fluctuate. However,
experiments also reveal that the (average) film thickness increases by only a few per cent on
heating the film above its glass transition temperature [103, 104]. As our interest is mainly in
the behaviour of our model at low T , this experimental finding suggests fixing both PN and
h in the simulation. Contrary to the bulk case, such a constraint can be realized for the film.
Imposing the film thickness still allows the surface area A of the system to vary, and so the
volume V = h A is a fluctuating quantity. Details on how to implement this algorithm may be
found in [69].

Molecular dynamics versus Monte Carlo. In the framework of computer simulations it
appears natural to address dynamical problems via MD techniques. However, if we are
interested in equilibrating long chain glass-forming polymer melts at low T , MD does not
necessarily lend itself to addressing this problem efficiently. The realistic MD dynamics
carries the price that the equilibration time can exceed the maximum time of a few hundred
nanoseconds that one is currently able to simulate.
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At that point, one might envisage resorting to Monte Carlo (MC) techniques [105]. The
strategic advantage offered by this method is the range of ways in which MC moves may be
designed to explore configuration space. The hope is to find an algorithm that, freed of the
need to capture the real dynamics, efficiently decorrelates the configurations of glass-forming
polymer melts at low T .

This demand on the algorithm appears to exclude as a possible candidate the simplest
MC technique, the application of local MC moves. A local MC move consists in selecting a
monomer at random and in attempting to displace it by a small amount in a randomly chosen
direction [28]. Not only should the local character of coordinate updating share the essential
problematic features of the (local) MD dynamics at low T , but also one may expect that
local MC moves will yield an unfavourably large prefactor for the relaxation time due to their
stochastic character. This conjecture is based on an observation made by Gleim et al [106].
Gleim et al compared the relaxation dynamics of a glass-forming binary mixture simulated,
on the one hand, by MD and, on the other hand, by a stochastic (Brownian) dynamics (which
is in some respects similar to MC). They demonstrated that, although the structural relaxations
at long times are the same for the two methods, MD is roughly an order of magnitude faster
than the stochastic dynamics. These findings are supported by the recent work of Voigtmann
et al [107].

However, MC moves need not be local. They can be tailored to alter large portions of a
chain. A prominent example of such nonlocal moves is the configurational bias Monte Carlo
(CBMC) technique [28, 85]. Application of this technique to dense polymer systems in the
canonical ensemble usually involves an attempt to remove a portion of a chain starting from
one of its monomers that is randomly chosen, and to regrow the removed portion subject to
the constraints imposed by the local potential energy. If successful, this should imply a large
modification of the chain configuration, thereby promising efficient equilibration. However,
Bennemann et al found that even in the limit where only the end is reconstructed (‘smart
reptation’), CBMC is inferior to ordinary MD [58]. In a dense melt, the probability of inserting
a monomer becomes vanishingly small everywhere except at the position where it was removed.
So, the old configuration of the chain is just restored. This trapping of the chain makes the
relaxation become very slow.

Thus, successful nonlocal chain updates in dense systems should involve moves that do
not require empty space. Promising candidates are double-bridging algorithms which were
successfully employed in simulations of polyethylene chains [108, 109], of the Kremer–Grest
model [110] and of a lattice model, the bond fluctuation model [28]. The basic idea of
the algorithm is to find pairs of neighbouring chains which one can decompose into two
halves and reconnect in a way that preserves the monodispersity of the polymers. Such a
connectivity-altering move drastically modifies the conformation of the two chains involved
and thus strongly reduces the dynamic slowing down related to chain length. However, if we
attempt to repeat this move over and over again on the melt configuration we started with, a
successful double-bridging event is likely to annihilate one of its predecessors by performing
the transition between two chains in the reverse direction. To avoid this inefficiency the
nonlocal chain updating should be complemented by a move which efficiently mixes up the
local structure of the melt. At low T , efficient relaxation of the liquid structure calls for a
method which alleviates the glassy slowing down in general. Thus, any algorithm achieving
this aim in nonpolymeric liquids should also accelerate the equilibration of glassy polymer
melts, provided that it can be generalized to respect chain connectivity. At present, no technique
has been established to solve this problem (see [111] for a topical review). However, possible
candidates appear to be ‘parallel tempering’ [112, 113] (see however [114]) or a recently
proposed variant of ‘Wang–Landau sampling’ [115].
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3. Structure and structural relaxation in the bulk

3.1. Vitrification versus crystallization

The Bennemann model (see section 2.2) implements two features which effectively eliminate
the risk of crystallization: first, the bond and the LJ potentials introduce two mutually
incompatible length scales, rb 	= rmin (equations (1) and (2)). This implies that the bond
potential locally distorts possible crystalline arrangements of the monomers (fcc or bcc),
which the LJ potential alone would impose (see figure 2). Second, the chains are very flexible.
Backfolding of adjacent bonds is only suppressed by the repulsive part of the LJ potential, and
not by some additional potential for the bond angle.

The latter feature is indeed crucial. If the model were supplemented by a bending potential
favouring large bond angles, crystallization on cooling from the melt would occur, despite the
incompatibility of rb and rmin. This was demonstrated by extensive MD simulations of a
semiflexible bead–spring model [10, 11, 116]. These studies show that short chains (with
e.g. N = 10) form extended-chain crystals in which the chains align parallel to each other.

We can set up such a crystalline state also for the Bennemann model [65]. A configuration
in which all chains are perfectly stretched out along the z direction and the monomers are placed
on a tetragonal Bravais lattice corresponds to a high density state that may be further optimized
by energy minimization. As the resulting structure has almost identical linear dimensions in
all three spatial directions, a cubic simulation cell was chosen to explore the melting of this
‘perfect’ crystal [65]. The study of [65] gives a melting temperature of Tm ≈ 0.76. The results
should be treated with care due to the constraints imposed by the periodic boundary conditions
and by the cubic shape of the (small) system. On the basis of the experience gained from
the above-mentioned semiflexible bead–spring model one estimates that such a procedure
may overrate Tm considerably [117]. Very roughly we expect 0.65 � Tm � 0.76. In the
following, we will be concerned with the temperature interval 0.45 < T � 1. In this interval,
no crystallization was observed upon cooling the melt quasistatically from high T toward the
critical temperature Tc of mode-coupling theory (Tc � 0.45; see sections 3.2 and 3.3). Thus,
the Bennemann model is well suited for exploring the properties of an amorphous polymer
melt in the supercooled state.

Remark on the term ‘supercooled state’. Within the framework of first-order phase transitions
a ‘supercooled state’ is defined as the region between the binodal and the spinodal lines in
the phase diagram. There, the system is in ‘metastable equilibrium’: it is in a long lived
state protected by a free energy barrier against transformation into the ordered phase. For the
Bennemann model this barrier is essentially infinite. The model preserves a fully equilibrated
amorphous structure on cooling through the region of the putative melting temperature. It
shares this property with real polymeric glass formers, such as atactic polymers, and with other
computational models for simple glass formers10. These examples suggest that metastability
with respect to a crystalline phase is not a conditio sine qua non for the emergence of glassy

10 Different choices as regards avoiding crystallization in simple fluids have been deployed. A commonly used
approach involves binary mixtures. Here, an extensively studied system is the binary mixture of Lennard-Jones
particles introduced by Kob and Andersen [155, 168]. In this system, crystallization is kinetically strongly suppressed
by a careful choice of the LJ parameters. However, a crystalline ground state has recently been discovered [372].
An alternative to using binary mixtures is using monatomic systems with specifically tailored interactions. Examples
include the Dzugutov model [373, 374], a single-component simple liquid with an interaction potential preventing
crystallization via the formation of local icosahedral structures, and Lennard-Jones systems supplemented with
a perturbation that depends on the static structure factor [354, 375], and polydisperse hard sphere-like systems
[107, 157, 219].



Topical Review R865

behaviour, and the classical definition of a ‘supercooled state’ should not be applied literally.
In our context, we refer to the melt as ‘supercooled’ if the temperature is so low that the slow
relaxation processes which ultimately lead to the glass transition of the melt can be observed
(see also [23, 40] for further discussion of this point). For the Bennemann model this implies
T � 0.7 ≈ Tm (see e.g. figure 8 in section 3.3). Note, however, that there are systems, such
as amorphous silica [118], in which the slow relaxation characteristic of the supercooled state
is already fully developed above Tm (in particular, Tc > Tm for silica).

3.2. Static properties: structure factors and PRISM theory

In the supercooled state the monomer number density ρm of the melt varies between
ρm(T = 0.7) = 0.91 and ρm(T = 0.46) = 1.04 [58]. A density of order 1 implies that
there is no free space for motion. This implies that, if all except one of the monomers were
frozen, that monomer could only vibrate around its initial position. Any displacement over
larger distances thus requires cooperative rearrangements of many monomers, that is, spatio-
temporal fluctuations of the density about the average value ρm. These dynamic features will
be addressed in section 3.3. Here, we want to focus on their static counterparts.

Structure factors of the melt and the chains. Density fluctuations for the wavevector q can be
measured using static structure factors [119]. For a polymeric liquid it is natural to distinguish
between the structure factor of a chain and that of the melt.

To introduce these quantities we consider a system containing n monodisperse chains of
length N in a volume V . The chain density ρ and the monomer density ρm are then given by

ρ = n

V
, ρm = nN

V
. (7)

Now let Sab(q) denote the collective static structure factor of two monomers a and b
(a, b = 1, . . . , N). We write Sab(q) as a sum of an intrachain and an interchain part:

Sab(q) = wab(q) + ρhab(q) (q = |q|). (8)

The intrachain part is given by

wab(q) = 1

n

〈 n∑
i=1

exp[−iq · (ra
i − rb

i )]

〉
, (9)

and the interchain part by

ρhab(q) = 1

n

〈 n∑
i 	= j

exp[−iq · (ra
i − rb

j )]

〉
. (10)

In these equations ra
i is the position of the ath monomer in the i th chain. When averaging the

site-resolved quantities wab(q) and hab(q) over all monomer pairs (a, b) we obtain the static
structure factor of the melt

S(q) = 1

N

N∑
a,b=1

Sab(q) = w(q) + ρmh(q) (11)

with

w(q) = 1

N

N∑
a,b=1

wab(q) and h(q) = 1

N2

N∑
a,b=1

hab(q). (12)

Here, w(q) is static structure factor of a chain and h(q) the Fourier transform of the
intermolecular pair correlation function [119].
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Figure 5. Main figure: static structure factor S(q) of the melt (equation (11)) and intrachain
structure factor w(q) (equations (12) and (9)) versus the modulus of the wavevector q for the
Bennemann model (section 2.2). S(q) is shown for three different temperatures as indicated. Since
w(q) is (almost) independent of T , it is depicted only for T = 0.46 (dashed line). The arrows
indicate the value of q corresponding to the radius of gyration (Rg � 1.45) and the position of
the amorphous halo, q∗, at T = 1. q∗ slightly increases on cooling: q∗(T = 1) � 6.9 and
q∗(T = 0.46) � 7.15. In real space, q∗ thus corresponds to a distance of the order of the monomer
diameter, in qualitative agreement with the behaviour of PB (cf figure 3). Inset: amplitude of the
amorphous halo S(q∗) versus T . The dashed horizontal line at 3.54 indicates the Hansen–Verlet
freezing criterion for the glass transition of hard spheres [120]. (S(q∗) and q∗ are expected to
increase slightly with chain length N ; see e.g. [121].) This figure is adapted from [67].

Simulation results for S(q) and w(q) obtained from a chemically realistic model of cis–
trans 1,4-polybutadiene (PB) at T = 273 K (Tc ≈ 216 K [122, 123]) have already been shown
in figure 3. Figure 5 presents the counterpart for the Bennemann model. Here, the temperature
interval extends from the high T ‘normal’ liquid state of the melt (T = 1) to temperatures
in the supercooled state slightly above the critical temperature Tc of mode-coupling theory
(Tc � 0.45; section 3.3). As also found for PB [53], we observe that the dependence of w(q)

on T is negligible. This demonstrates that the chains preserve a random coil-like conformation
upon cooling. There is no discernible trend of incipient crystallization. The same applies to the
collective structure factor. Although S(q) changes with temperature, the qualitative signature
expected for a disordered, dense system manifests itself in the wavevector dependence of S(q).
The structure factor is small at low q , reflecting the small compressibility of the melt11. Then,
it increases with increasing q toward a maximum, the so-called ‘first sharp diffraction peak’ or
‘amorphous halo’, before it converges to 1 in an oscillatory manner as q → ∞. Compared to the
PB melt (cf figure 3), the Bennemann model exhibits similarities and differences. In addition
to the local intrachain structure being of course different, there are qualitative disparities
as regards the importance of the intrachain and interchain contributions to S(q) beyond the
amorphous halo. For PB, like other polymers (see e.g. [124]) and low molecular weight glass
formers (see e.g. [125, 126]), the structure factor is almost entirely intramolecular, whereas
both intrachain and interchain parts clearly contribute to S(q) for the Bennemann model. On

11 From S(q → 0) = kBTρmκT , we can estimate the isothermal compressibility (κT ) relative to the ideal gas
(1/kBTρm). For the Bennemann model we find kBTρmκT ∼ 0.02 in the supercooled state. This value is similar to
what would be obtained for low molecular weight glass formers [376]. For polymer melts, however, one typically
finds kBTρmκT ∼ 0.1 [377].
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the other hand, the Bennemann model and the chemically realistic model for PB agree with
each other in that w(q) is essentially independent of T . Thus, modifications of S(q) with
decreasing temperature must be caused by changes in the intermolecular packing. We find
for the Bennemann model, and we expect for PB, that the position q∗ of the amorphous halo
and its amplitude S(q∗) grow on cooling as a consequence of the increase of density and the
attendant tighter packing of the monomers on a local scale.

We may interpret this observation in terms of an empirical freezing criterion, the Hansen–
Verlet criterion [127]. According to this criterion a liquid solidifies as soon as S(q∗) surmounts
a critical value. For crystallization this threshold is S(q∗) ≈ 2.85.12 To our knowledge, no
threshold value has yet been established for the glass transition. Guidance can be obtained
from hard sphere systems—an appropriate model for some colloidal suspensions [128–130]—
in which a glass transition occurs for volume fractions ϕ larger than a critical value ϕc. Within
the framework of ideal mode-coupling theory (MCT) the glass transition of hard spheres is
related to local packing constraints which become so strong at ϕc that the system freezes [131].
At ϕc MCT predicts S(q∗) ≈ 3.54 [120].

We can compare this prediction with our simulation results. The inset of figure 5 shows
that it is close to the value found for S(q∗) at T = 0.46. This temperature in turn lies slightly
above the critical temperature Tc � 0.45, deduced from an extensive analysis of the dynamics
of the Bennemann model (cf [58–61, 63, 64] and section 3.3). The close agreement between the
hard sphere results and our simulation results suggests that the criterion S(q∗) ≈ 3.54 may be
employed to approximately locate Tc, at least in systems in which the glass transition is driven
by packing constraints resulting from the repulsive interactions between the particles [120].

Site-resolved structure factors: comparison with PRISM theory. The ‘polymer reference
interaction site model’ (PRISM) has been proposed as a liquid state approach to the equilibrium
properties of polymeric systems [124, 132]. The key idea of the theory is to subdivide a polymer
into spherical interaction sites [133]. The sites need not coincide with the monomers of a chain.
The handling of most real polymers requires one to identify an interaction site with a subgroup
of a monomer (see e.g. [134, 135]). For bead–spring-likemodels, however, such complications
do not arise [136–138]. Thus, we use ‘site’ as a synonym for ‘monomer’ in the following and
we enumerate the sites from a = 1 to N .

Starting from the decomposition of the chains into interaction sites, PRISM theory then
establishes an approximate relation between the intrachain and interchain contributions to
Sab(q) via a generalized site–site Ornstein–Zernike equation [119, 133]

hab(q) =
N∑

x,y=1

wax (q)cxy(q)
[
wyb(q) + ρhyb(q)

]
. (13)

Here, wab(q) and hab(q) are defined in equations (9) and (10), ρ = n/V is the chain density
and cab(q) denotes the direct correlation function for the sites a and b. Qualitatively, we may
interpret cab(q) as the effective pair potential that two monomer densities, located on different
chains, experience in the melt [124]. The direct correlation function can be expressed in terms
of wab(q) and Sab(q) by solving equation (13) for cab(q). This gives

ρcab(q) = [
w−1

ab (q) − S−1
ab (q)

]
(a, b = 1, . . . , N), (14)

where X−1
ab (q) represents the (a, b) element of the inverse of the matrix X(q).

12 For two-dimensional [378] and three-dimensional [379] colloidal suspensions in thermal equilibrium different
phenomenological freezing criteria were compared and shown to yield identical results. Reference [380] extends
these studies to a nonequilibrium situation. Under the influence of an external oscillatory field the freezing criteria
hold as well, provided that the system is not too far from equilibrium.
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The Ornstein–Zernike equation is a computationally demanding problem; it is of order N2.
The number of equations quickly becomes prohibitively large, as the chain length increases.
Simplifications are thus necessary in the large N limit. However, just in this limit one would
expect correlations between different chains to be only weakly affected by the presence of
chain ends. This suggests taking all interaction sites as equivalent. This ‘equivalent-site
approximation’ is usually made for the direct correlation function. That is,

cab(q) = c(q). (15)

The approximation does not entail that the site dependence of the intermolecular correlations
also vanishes. This can be made explicit by the following argument: we insert equation (15)
into equation (13) and utilize the definition of h(q) (equation (12)) to obtain the site-averaged
Ornstein–Zernike equation

h(q) = w(q) c(q)
[
w(q) + ρmh(q)

]
. (16)

This result and equation (15) can then be re-inserted into equation (13), allowing us to write
the site–site structure factor Sab(q) as

Sab(q) = wab(q) + ρhab(q) (see equation (8))

= wab(q) + ρ
h(q)

w(q)2

[ N∑
x=1

wax(q)

][ N∑
y=1

wby(q)

]
. (17)

Thus, PRISM theory predicts that the site dependence of intermolecular correlations stems
entirely from the intrachain structure.

If the chain length is small, it is not clear whether equations (15) and (17) apply. Figure 6
tests the validity of the equivalent-site approximation for the Bennemann model with N = 10.
We determined the site dependent direct correlation functions cab(q) via matrix inversion of
Sab(q) and wab(q) according to equation (14). The site-averaged direct correlation function
was calculated from the simulation results for w(q) and S(q) using

ρmc(q) = 1

w(q)
− 1

S(q)
; (18)

this relation follows from equations (11) and (16). The comparison of cab(q) and c(q) reveals
that the equivalent-site approximation works well, even for decamers, unless cab(q) includes
a chain end (a = 1 or N). Then, deviations occur close to q∗ and for q � 5. Nonetheless, the
overall agreement between cab(q) and c(q) is good, so we can use equation (15) to interpret
the intermolecular site–site correlations of our model.

This is done in figure 7. The figure compares simulation results for Sab(q) to the
predictions of PRISM theory. We find that Sab(q) is well reproduced by equation (17). This
demonstrates that the structural properties of the Bennemann model, even subtle monomer–
monomer correlations—as well as correlations between the monomers and the centre of mass
of a chain [67]—may be calculated from the average interchain direct correlation function
and the fully site dependent intrachain structure factors, both of which are determined in the
simulation.

3.3. Structural relaxation: comparison with mode-coupling theory

The previous section revealed that the structure of the polymer melt changes smoothly
on cooling; in particular, it remains amorphous. The decrease of temperature alters the
intermolecular structure—the packing becomes tighter—but has essentially no effect on the
intrachain structure (cf figure 5). This state of affairs becomes very different if we turn to the
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Figure 6. Test of the equivalent-site approximation (equation (15)) for the Bennemann model at
T = 0.47. The chain length is N = 10. The site-averaged direct correlation function (solid line) is
compared to various site dependent direct correlation functions cab(q). The dashed line represents
the end–end correlation c11(q), the dotted grey lines the autocorrelation between the monomers
a = 2, . . . , N/2, i.e., c22(q), c33(q), c44(q), c55(q). The inset magnifies the behaviour close to
q∗. This figure is taken from [67].
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Figure 7. Comparison of the site–site static structure factor Sab(q) determined from the simulation
at T = 0.47 (circles) and from PRISM theory (solid lines; equation (17)). The simulation results
are obtained from the Bennemann model with N = 10. The end–end structure factor S11(q) is
shifted vertically for clarity.

dynamic generalizations of the static structure factors. Both the relaxation of the chain and
that of the melt undergo a strong slowing down in the same temperature interval where only
weak changes of the structure occur [59, 63, 64].

As an example, we consider the coherent intermediate scattering function φq(t). This
function is defined by

φq(t) = 1

M S(q)

〈 M∑
i=1

M∑
j=1

exp{−iq · [ri(t) − r j (0)]}
〉
, (19)
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Figure 8. Coherent intermediate scattering function φq (t) versus time t at q = 6.9 (� q∗ =
maximum of S(q); see figure 5). Different temperatures are shown. From left to right: T = 0.7,
0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47, 0.46 (Tc � 0.45). For T = 0.7 and 0.46 the α relaxation time
τq , defined by the condition φq (τq) = 0.1, is indicated (‘ ’). For T = 0.46 the (approximate) time
intervals where the MCT β and α processes occur are shown. This figure is adapted from [63, 64].

where ri (t) denotes the position of the i th monomer in the melt at time t and the melt contains
M (=nN) monomers in total. Qualitatively, φq(t) may be interpreted as the overlap, measured
on the scale of the wavelength 1/q , between the initial configuration of the melt and its
configuration at time t , both of which are fully specified by the set of monomer positions
{ri (t)}. Equation (19) shows that the overlap is normalized at t = 0 and decays to 0 in the long
time limit provided that the temperature is so high that the configurations can fully decorrelate.
A possible means to quantify this loss of memory of the initial state is to introduce a relaxation
time, the ‘α relaxation time’ τq , through the condition that φq(τq) has decayed to some small
value. Typically, we choose φq(τq) = 0.1 [64].

Figure 8 depicts the time dependence of φq(t) for q � q∗, as the melt is cooled from
T = 0.7 to 0.46. In this temperature interval, the α relaxation time increases by more than
two orders of magnitude. This disproportionately large change of the dynamics compared to
the moderate variation of the structure is an indication for the onset of glass-like behaviour
in the Bennemann model. Figure 8 points to a possible origin of the retarded dynamics.
With decreasing temperature an intermediate time window emerges, where the relaxation is
protracted. This window increases in size on cooling, thus shifting the ultimate decay of φq(t),
the so-called ‘α relaxation’, to longer times.

Such a two-step relaxation of φq(t) is a chief prediction of the mode-coupling theory
(MCT) for the structural glass transition [21–24]. The qualitative agreement between the
theoretical prediction and the simulation results suggests performing a more detailed compar-
ison. However, since not every two-step relaxation need necessarily be related to the physics
described by MCT, we split this comparison into two parts. We first test some qualitative
predictions which will provide evidence that an application of MCT to our simulation data
might be fruitful. Only then do we carry out the quantitative analysis. To prepare for this
comparison we begin by compiling some theoretical background in the next section.

3.3.1. Ideal MCT: leading order results and corrections. Two versions of mode-coupling
theory, known as ‘ideal MCT’ [23, 24, 139] and ‘extended MCT’ [23, 24, 139–141], have
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been developed. The above-mentioned comparison with the simulation data will exclusively
explore the applicability of the ideal MCT. So we focus on this version in the following and
touch on the extended theory only briefly when discussing the range of validity of the ideal
MCT. Our presentation mainly follows references [142, 143].

The ideal MCT proposes an approximate equation of motion for the collective density
fluctuations φq(t) at wavevector q. This equation couples the dynamics of φq(t) (‘mode q’) to
that of all products φk(t)φp(t), obeying k+p = q (whence the name ‘mode-coupling theory’).
The coupling coefficients are completely determined by the static structure of the glass former,
e.g. by S(q) and c(q). These equilibrium quantities depend on an external control parameter,
for instance on T if the pressure or density is fixed. As T decreases, the coupling coefficients
become larger, leading to a singular behaviour of φq(t) at a critical temperature Tc. More
precisely, the mathematical analysis of the mode-coupling equations reveals that the long time
limit of φq(t) qualitatively changes at Tc:

lim
t→∞ φq(t) =

{
0 for T > Tc,

fq(T ) for T � Tc.
(20)

For T > Tc, density fluctuations relax completely. This implies that the system eventually
loses the memory of its initial state, a characteristic feature of the liquid state. By contrast,
density fluctuations cannot fully decay in an amorphous solid: a particle rattles around its initial
position without being able to leave the ‘cage’ built up by its nearest neighbours. Therefore,
a finite fraction of φq(t), 0 < fq < 1, survives in the long time limit. The value of fq serves
as a measure for the ‘solidity’ of the amorphous solid on length scale 1/q . fq is termed the
‘nonergodicity parameter’ because the ‘ideal glass phase’ below Tc is ‘nonergodic’ (in the
sense of [144]).

The discovery of Tc in the solution of the MCT equations allows one to introduce the
‘separation parameter σ ’,

σ = C
Tc − T

Tc
(C = system dependent constant), (21)

which is utilized as a small parameter to derive asymptotic expansions around Tc. The following
equations are predictions for small |σ |.

The separation parameter determines two relevant timescales of the ideal MCT: the β

relaxation time tσ ,

tσ = t0
|σ |1/2a

(0 < a < 0.3953), (22)

and the α relaxation time t ′
σ (valid for T > Tc),

t ′
σ = t0

|σ |γ , γ = 1

2a
+

1

2b
(γ > 1.765). (23)

Here, t0 denotes a microscopic timescale and b is called the ‘von Schweidler exponent’
(0 < b � 1). The exponents a and b are not independent of each other. They are related by
the ‘exponent parameter λ’:

λ = (1 − a)2

(1 − 2a)
= (1 + b)2

(1 + 2b)
(1/2 � λ < 1). (24)

The exponent parameter does not depend on T . It is determined by the equilibrium properties
of the glass former at Tc.

MCT predicts that φq(t)—and in fact all correlation functions whose temporal evolution
is coupled to that of φq(t)—should relax in two steps if T → T +

c . In the first step, φq(t)
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approaches a plateau value, the so-called critical nonergodicity parameter f c
q (= fq(Tc)), and

in the second step, it relaxes away from f c
q toward zero. MCT refers to the intermediate time

window encompassing the plateau as the ‘β process’. It precedes and overlaps in its late time
part with the α relaxation (cf figure 8). In the following, we will present some MCT predictions
for both relaxation processes.

Predictions for the β regime. Mathematically, the β regime is defined as the time window
t0 � t � t ′

σ in which |φq(t)− f c
q | � 1. (This corresponds to t ∼ tσ because φq(t ≈ tσ ) = f c

q .)
In this time window and for T → T +

c , φq(t) is predicted to obey the equation [23, 24, 142, 143]

φq(t) = f c
q + hq

√|σ | g(t̂)

+ hq |σ |Aq t̂−2a + hq |σ |B2 Bq t̂ 2b, (25)

where t̂ = t/tσ and B = B(λ) is a constant [145]. The first line of equation (25) is called
the ‘factorization theorem’. This name refers to the property that the correction term for f c

q
is split into two factors: a factor depending only on space, the ‘critical amplitude hq ’, and a
factor depending only on time and temperature, the ‘β correlator G(t)’, G(t) = √|σ | g(t̂).
Both f c

q and hq are independent of T .
The factorization theorem is the MCT result in leading order of

√|σ |, the second line of
equation (25) representing corrections to it for both short times (∼t̂−2a) and long times (∼t̂ 2b).
These corrections violate the factorization property due the q dependence of the factors Aq

and Bq . Expressions for Aq and Bq have been worked out for hard sphere systems [142]. For
the subsequent analysis it is only important to know that (i) Aq and Bq are given in terms of the
static structure at Tc—they are independent of T —and (ii) they exhibit the same dependence
on q .

Predictions for the α regime. Within MCT the term ‘α regime’ refers to the decay of φq(t)
from f c

q to zero. As f c
q = φq(t ≈ tσ ), this decay occurs for t � tσ , thus overlapping with

the β process for tσ � t � t ′
σ . t ′

σ is the relevant timescale for the α process. Ideal MCT
predicts that the α process satisfies a time–temperature superposition principle (TTSP) for
T → T +

c [23, 24, 142, 143]. Quite generally, the TTSP means that correlation functions,
measured at different T , collapse onto a temperature independent master curve if the time
variable is rescaled by the α relaxation time. MCT derives the TTSP in the following form:

φq(t) = φ̃q(t/t ′
σ ) (t � tσ ), (26)

where φ̃q(·) denotes the α master curve. This equation needs some explanation, lest the key
features be lost. Two points will be highlighted. (i) The master curve is independent of T , but
depends on q , i.e., on the correlator under consideration. (ii) There is only one timescale t ′

σ (T )

underlying the α process. Close to Tc, all relaxation times τq , defined e.g. via φq(τq) = 0.1,
are predicted to be proportional to t ′

σ (T ). That is,

τq(T ) = Cq t ′
σ (T ), (27)

with Cq being a T independent constant [142].
No simple closed expression for the α master curve is known. However, it can be well

approximated by a Kohlrausch–Williams–Watts (KWW) function

φq(t) � f K
q exp[−(t/τK

q )β
K
q ] (t � tσ ), (28)

except in the regime where β and α processes overlap (i.e., for tσ � t � t ′
σ ). There, systematic

deviations are expected because the short time expansion of equation (28) does not agree with
the exact short time expansion of φ̃q(t/t ′

σ ). The latter is given by

φq(t) = f c
q − hq B

(
t/t ′

σ

)b
(tσ � t � t ′

σ ), (29)
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where B is the same constant as in equation (25). Equation (29) is called the ‘von Schweidler
law’. It shows that βK

q 	= b in general [146]. However, there is a special case, the limit of large
q . In this limit, it was proved [147] that there is a time interval t/t ′

σ � t K
q /t ′

σ � 1 in which
the α process obeys

lim
q→∞ φq(t) = f c

q exp[−q(t/t ′
σ )b], q ∝ q. (30)

This implies

lim
q→∞ f K

q = f c
q , lim

q→∞ βK
q = b, lim

q→∞ τK
q ∝ q−1/b t ′

σ . (31)

The preceding results for the α process are valid in leading order of σ ; corrections are of order
|σ | [142, 143]. Thus, one expects that the MCT predictions for the α process should extend
to higher temperatures than those for β process, corrections to which are of order

√|σ | (see
equation (25)).

Discussion. The previous paragraphs summarized predictions from ideal MCT. These
theoretical results have to be put into the perspective of possible applications to simulation (or
experimental) data. This naturally leads to the question of their range of validity. We want
to briefly address this question via the following three remarks. (A detailed review of the
derivation, the physical interpretation, the limitations and an extension of the ideal MCT can
be found in [139].)

• MCT aims at describing the structural relaxation of supercooled liquids well outside the
time window of the initial decay of φq(t), that is for t � t0 (for a precise definition of t0
see e.g. [148]). Relaxation processes for short times t ∼ t0 are not treated properly. Thus,
deviations have to be expected in the high T liquid state, where φq(t) already decays
on the scale t0. Some feeling for what ‘high T ’ means can be obtained from a recent
comparison between MD simulations for a binary LJ mixture and MCT calculations in
which the theory was extended by a model allowing one to describe the short time decay of
φq(t) [149]. This study demonstrates that the nonlinear coupling of density fluctuations,
responsible for the slow dynamics close to Tc, is irrelevant for T � 3. On the other hand,
the nonlinear coupling is no longer negligible at T = 1—that is, already for temperatures
T ≈ 2Tc.

• For T ≈ 2Tc equations (22–31) cannot be applied yet. Calculations for hard spheres
suggest that some of the asymptotic results should become observable for (T − Tc)/Tc <

0.1 only, whereas much smaller distances from Tc are required for them to be fully borne
out [142, 143]. This range of validity sensitively depends on q , i.e., on the correlator
under consideration, and on whether the dynamics is monitored in the time domain or in
the frequency domain. The time domain appears to be better suited for analysis via the
asymptotic results [142, 143].

• Not only at high T , but also very close to and below Tc, deviations from the ideal MCT
are expected. Ideal MCT predicts a complete structural arrest at Tc. A freezing at Tc

is not observed experimentally [21, 150]. (An exception is possibly provided by hard
sphere-like colloidal suspensions [128].) Rather than diverging, the structural relaxation
time continuously increases when cooling the glass former through Tc toward Tg. Thus,
alternative relaxation mechanisms, not incorporated in the ideal MCT, must exist, which
eventually become dominant as T → T +

c and particularly for T � Tc. Attempts to include
these missing relaxation mechanisms have led to the extended version of MCT [140, 141].
However, the validity of this extension is not well understood [151, 152]. So we base the
subsequent analysis on the ideal MCT.
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Figure 9. Test of the factorization theorem for φq(t) at T = 0.46 via equation (32). By definition,
Rq (t ′′ = 0.610) = 1 and Rq (t ′ = 86.43) = 0. The times t ′ and t ′′ (vertical dotted lines) were
chosen at the beginning and at the end of the plateau region (see figure 8) so that the denominator
of equation (32) is large. This is advisable for numerical stability. Note that the order of φq (t)
before the β regime is preserved when leaving it at long times (compare e.g. the curves at q = 6.9
and 19; the same ‘ordering rule’ is also observed for simple glass-forming liquids [107, 153]).
This is qualitative evidence for the MCT prediction that the short and long time corrections to the
factorization theorem exhibit the same q dependence (cf equation (25)). This figure is adapted
from [63].

3.3.2. Qualitative comparison: β regime. In the β regime, φq(t) should obey the factorization
theorem (cf equation (25))

φq(t) = f c
q + hq G(t).

This equation suggests a simple test which works directly with the simulation data without
resorting to any fitting procedure. (Due to this appealing feature the same test was also
performed in other simulations of fragile glass formers [107, 153–155] and of SiO2 [156].)
Assume that we select two times t ′ and t ′′ from the intermediate window where the plateau
occurs; they can be any times one likes. Then, the ratio

Rq(t) = φq(t) − φq(t ′)
φq(t ′′) − φq(t ′)

= G(t) − G(t ′)
G(t ′′) − G(t ′)

(32)

will be independent of the wavevector if the factorization theorem holds.
Figure 9 shows Rq(t) for T = 0.46. We find that there is indeed an intermediate time

window where the scattering functions cluster around a master curve. Similar master curves
are also obtained at higher T as long as φq(t) decays in two steps (i.e. for T � 0.52; cf figure 8).
Furthermore, at a given T the master curve is the same for different correlation functions, such
as the incoherent scattering function, the coherent scattering function of the chains and the
Rouse mode correlators [63].

Relevance of the result found. The Rouse modes provide a good example that not every two-
step process satisfies the factorization property. An indiscriminate fulfilment would of course
invalidate equation (32) as a meaningful hint of the applicability of MCT. The factorization
theorem was applied to simulation results for the chemically realistic model of cis–trans 1,4-
polybutadiene [53], alluded to in section 2.1. The test was motivated by the observation
of a two-step relaxation for the dynamic Rouse modes (and for the monomer mean square
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displacement; see figure 3). This relaxation occurs, however, at T = 273 K; that is, at a
reduced distance to Tc ≈ 216 K of about (T − Tc)/Tc ≈ 0.26. For the Bennemann model this
would correspond to T ≈ 0.57, a temperature too large for the two-step decay to be observed
(figure 8). In fact, the factorization theorem was found to be violated in [53]. The authors
rather argued that the observed two-step relaxation should be interpreted as a consequence of
intramolecular rotational barriers for the torsional angles and not as a result of the ‘cage effect’
underlying the MCT β process (which appears to emerge, however, in the cold melt close to
Tc ≈ 216 K [52]).

Length scales of the β process: evidence for the cage effect. The term ‘cage effect’ means that
a particle in a dense liquid is permanently surrounded by other particles, spatially organized
in nearest neighbour shells. The particle is enclosed in a ‘cage’ and simultaneously ‘cages’
its neighbours. Thus, any displacement of the particle beyond early time oscillations hinges
on the ability of its neighbours to move, and the caged particle itself will trigger motion of
the neighbours. This picture appeals to cooperative rearrangements on the scale of the nearest
neighbour shells as a prerequisite for structural relaxation to occur. The factorization theorem
supplies a convenient means to quantify the spatial extent of this (so-defined) cooperativity for
the β process.

Since length scales are easier to visualize in real than in reciprocal space, we introduce
the Fourier transform of the intermediate scattering functions, the van Hove correlation
functions [119] for the self-part (Gs(r, t)) and distinct part (Gd(r, t)) of the melt,

Gs(r, t) = 1

nN

〈 n∑
i=1

N∑
a=1

δ
(
r − [ra

i (t) − ra
i (0)]

)〉
, (33)

Gd(r, t) = Gp(r, t) +
1

nN

〈 n∑
i 	= j

N∑
a 	=b

δ
(
r − [ra

i (t) − rb
j (0)]

)〉
, (34)

where Gp(r, t) is the distinct part of the van Hove correlation function for a chain

Gp(r, t) = 1

nN

〈 n∑
i=1

N∑
a 	=b

δ
(
r − [ra

i (t) − rb
i (0)]

)〉
. (35)

Here ra
i denotes the position of monomer a (a = 1, . . . , N) in chain i (i = 1, . . . , n). In the

β regime we expect

Gx(r, t) = Fx(r) + Hx(r)G(t) (x = s, p, d) (36)

so the ratio [154, 155]

Rx(r, t) = Gx(r, t) − Gx(r, t ′)
Gx(r ′, t) − Gx(r ′, t ′)

= Hx(r)

Hx(r ′)
(r ′ = constant) (37)

should be independent of time and inform us about the length scales involved in the β process
for the quantity ‘x’.

We computed equation (37) for various temperatures. An example for T = 0.48 is
presented in figure 10. Of course, the main interest of the figure consists in the spatial
variation of Rx(r, t); but two key features also emerged from the analysis [63] which should
be mentioned. (i) We find master curves which depend on the type ‘x’ of the correlator, but
are independent of T . (ii) The master curves can only be constructed for times from the β

window. For shorter and longer times no superposition of the data is obtained. Both findings
are in qualitative accord with MCT.
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Figure 10. Rx(r, t) (equation (37)) versus distance r for nine different times from the β regime at
T = 0.48 (t ′′ = 0.988 � t < t ′ = 21.97). Panel (a) shows Rx(r, t) for the self-part of the van Hove
function, panel (b) that for the distinct part of the chains and panel (c) that for the distinct part of
the melt. For the distinct parts the corresponding pair distribution functions, gp(r) (chain) and g(r)
(melt), are presented for comparison (dotted lines; gp(r) and g(r) are rescaled to fit into the figure).
Note that the first peak of g(r) reflects the two length scales of the model, rb ≈ 0.97 and rmin ≈ 1.12
(section 2.2). The constant r ′ is chosen such that the (positive) denominator of Rx(r, t) is largest at
r ′

x (r ′
s = 0.13253, r ′

p = 0.9575, r ′
d = 1.1025). This is favourable for numerical stability. In panel

(a), rl (= 0.2323) denotes the zero of Rs(r, t) and the circles represent the Gaussian approximation,
equation (39). Equation (39) has a zero at

√
6rsc � 0.2327 and a minimum around

√
10rsc � 0.3.

Here, rsc (�0.095) is the Lindemann localization length (compare the discussion under the heading
‘β process at the level of the single-particle motion’ in section 3.3.2). In all panels, the dash–dotted
grey lines correspond to the time closest to t ′ where numerical inaccuracies occur because Rx(r, t)
is undetermined for t = t ′. From [63].

Viewing this from the perspective of equation (36) we can conclude that distances
for which Hx(r) is zero will not contribute to the relaxation of the van Hove correlation
functions. Figure 10 demonstrates that Hx(r) quickly vanishes for distances larger than a few
monomer diameters, the most long ranged being the distinct part of the melt, Hd(r), whose
oscillations persist to r ≈ 4. On the level of the collective density fluctuations the β relaxation
thus comprises a monomer and its neighbours up to about the fourth-neighbour shell. The
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most important contributions come from the first-and second-nearest neighbours. This local
character of the relaxation is direct evidence for the cage effect.

β process at the level of the single-particle motion. For the self-part of the van Hove function
we find that the monomer motion is limited to displacements smaller than 1 (equal to the
monomer diameter). For shorter distances, Hs(r) vanishes at rl = 0.2323, is positive for
r < rl and is negative for r > rl . The sign of Hs(r) is an important factor in determining
Gs(r, t), i.e., the probability of finding a displacement of size r in time t . To see this we exploit
a property of the β correlator G(t). It decreases monotonically with t [142]. So the rate at
which the van Hove function relaxes is given by

∂Gs(r, t)

∂ t
= −Hs(r)

∣∣∣∣∂G(t)

∂ t

∣∣∣∣ ∝ −Hs(r). (38)

This equation suggests the following interpretation. In the course of the β process the
probability for monomer displacements of size r decreases most where Hs(r) is largest
(r ≈ 0.13), and increases most where it is smallest (r ≈ 0.35). Since r = 0.35 is much
less than the monomer diameter, we conclude that a monomer which attempts to replace one
of its neighbours—that is, attempts to make a displacement of order 1—is partially reflected
back to its initial position. This ‘reflection’ has also been demonstrated by a different analysis
in a simulation of a (polydisperse) hard sphere system [157]. There, it was found that the
directions of particle displacements in successive time intervals are on average opposite to
each other, provided that r � 0.8. The intermittency of displacements of order 1 is evidence
for the transient localization of the particles by their nearest neighbours in the β regime.

For r < 1 figure 10(a) shows that there is a characteristic distance, the distance rl where
Hs(r) vanishes. Numerically, rl agrees with the zero of the Gaussian approximation [63]

Hs(r)

Hs(r ′)
∝ (1 − r2/6r2

sc) exp
(−r2/4r2

sc

)
, (39)

which occurs at
√

6rsc � 0.2327 (rsc � 0.095 [59]). The parameter rsc is called the
‘critical localization length’ in MCT [143]. Its value may be interpreted in terms of the
Lindemann criterion of melting. The criterion states that a (crystalline) solid melts if the
particle displacements about the equilibrium position reach ∼10% of the particle diameter
(see e.g. [158, 159]). Thus, the Gaussian approximation—though only in qualitative agreement
with the simulation results for r � rl (figure 10(a))—suggests that rsc is the important length
scale for the single-monomer motion in the β regime.

Evidence for string-like motion? Equation (38) also applies to the distinct parts of the van
Hove functions. Since Hp(r) and Hd(r) oscillate in phase with the corresponding pair distri-
bution functions for r � 1 (cf figure 10), distances where the probability of finding another
monomer was originally high are depleted, whereas others of initial low probability are pop-
ulated. So, monomers also penetrate into the region r < 1 that another monomer occupied at
t = 0. Of course, the monomers can only penetrate into this region to the extent that the initially
present monomer leaves it. Thus, it is not unreasonable that for r < 1, Hp(r) and Hd(r) appear
to be the mirror image of Hs(r) for r � rl. If a monomer moves away from its initial position
by r ≈ 0.35 (minimum of Hs(r)), other monomers can enter the initial exclusion zone up to
r ≈ monomer diameter − 0.35 ≈ 0.7 (≈the minimum of Hp(r) and Hd(r)). As the displace-
ments involved are small, only nearest neighbours should be able to participate in this partial
replacement process. So figure 10 suggests that adjacent monomers follow each other. In fact,
a microscopic analysis of the monomer motion supports this interpretation. In section 3.4 we
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Figure 11. Time–temperature superposition (TTSP) for φq (t) at q = 4 (lower panel), 6.9 (right
ordinate in upper panel), 12.8 (left ordinate in lower panel). The time axis is scaled by the α

relaxation time τq∗ at the maximum of S(q). (Here, we took q∗ = 6.9; see figure 5.) τq∗ is
defined by the condition φq∗ (τq∗ ) = 0.1. Note that the temperature interval where TTSP is well
fulfilled depends on the wavevector, and that deviations begin to occur at T = 0.46 (dashed
lines), i.e., close to Tc (�0.45). The dotted horizontal line, labelled ‘ f c fit

q ’, indicates the value
of the nonergodicity parameter at q = 6.9 resulting from an analysis of the MCT β process via
equation (25) (cf section 3.3.4). The dotted horizontal line, labelled ‘ f c MCT

q ’, is the MCT prediction
based on the static input obtained from the simulation (cf section 3.3.5). This figure is adapted
from [64].

will find that (highly mobile) monomers tend to follow each other in quasi-one-dimensional
paths, and that this tendency gradually develops throughout the β regime, is maximum for the
early α relaxation and vanishes when the monomer displacements become diffusive.

3.3.3. Qualitative comparison: α regime. In the α regime, φq(t)—and other correlation
functions coupling to φq(t)—are expected to obey the TTSP (equation (26)).

In previous tests of equation (26) a separate scaling time was defined for every correlation
function to be analysed [58–61, 64]. For φq(t) this implies that the scaling time depends
on q . A more demanding test [149, 160] would employ the same time for all wavevectors,
as suggested by equation (27). For instance, one can choose τq∗ , the relaxation time at the
maximum of S(q), for all q. This choice is made in figure 11. We still find that the TTSP
holds, but the quality of the superposition is inferior to that obtained by adapting the scaling
time to the q value under consideration (see e.g. [64]).

Irrespective of how the scaling time is chosen we observe deviations from TTSP at both
large and small T . At large T , one may argue that the temperature is too far away from Tc

for the asymptotic result (26) to apply (see section 3.3.1). Within MCT, deviations at high T
are thus expected and predicted to depend on the wavevector [142, 143]. For instance, hard
sphere calculations for φq(t) suggest that the TTSP should extend for q ≈ q∗ to higher T than
for wavevectors further away from the maximum of S(q) [142]. We find the same behaviour
here (cf figure 11).
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The deviations from the TTSP at T = 0.46, however, pose a problem for the ideal MCT13.
They are observed in several recent simulations very close to the critical temperature [161]
or critical density [107, 162]. Within MCT these deviations from the ideal behaviour are
attributed to additional, not yet well understood relaxation mechanisms (see the discussion
at the end of section 3.3.1). Therefore, we focus, in the subsequent quantitative analysis,
on T = 0.47. This temperature is a compromise: it is close to Tc, but not so close that the
additional relaxation mechanisms obscure the characteristics predicted by the ideal MCT, such
as the TTSP (cf figure 11).

3.3.4. Quantitative comparison: asymptotic results. Figure 12(a) illustrates the evolution of
the structural relaxation close to Tc with two examples: φq(t) and its incoherent counterpart,
the incoherent intermediate scattering function φs

q(t),

φs
q(t) = 1

M

〈 M∑
i=1

exp
{−iq · [

ri (t) − ri(0)
]}〉

, (40)

where ri (t) denotes the position of the i th monomer at time t and M (=nN) the total
number of monomers in the melt. φs

q(t) measures the decorrelation of the positions of an
individual monomer with time on length scale 1/q. Three time regimes may be distinguished in
figure 12(a): early times where the initial decay of φq(t) and φs

q(t) from 1 occurs, intermediate
times of the β process and late times of the α relaxation.

Early times (t < 0.2). The initial decay of the correlation functions is described by the exact
short time expansions

φs
q(t) = 1 − 1

2
�s 2

q t2 + · · · with �s 2
q = q2v2, (41)

φq(t) = 1 − 1

2
�2

q t2 + · · · with �2
q = q2v2

S(q)
, (42)

where v = kBT/m (=T in our units) is the thermal velocity.
These short time expansions hint at a possibility for how φs

q(t) and φq(t) could behave at
longer times. The term v2t2 also determines the initial increase of the monomer mean square
displacement (MSD) g0(t), i.e.,

g0(t) =
〈[

ri (t) − ri(0)
]2

〉
= 3v2t2 + · · · ; (43)

this suggests a ‘Gaussian approximation’ for φs
q(t):

φs
q(t) = exp

[− 1
6 q2g0(t)

]
. (44)

On the other hand, appealing back to equation (42) we may assume that φs
q(t) and φq(t) are

closely related to one another, φq(t) being given by

φq(t) = φs
q̃(t) with q̃ = q/

√
S(q). (45)

In liquid state theory, this assumption is called ‘modified Vineyard approximation’ [163];
in [164, 165] it is referred to as a type of ‘de Gennes narrowing’.

13 Note, however, that no deviations are observed in the β regime for T = 0.46. The simulation data still satisfy the
factorization theorem (cf equation (25) and figure 9). The latter finding is not limited to our polymer model; it was
also observed e.g. for amorphous silica [156], and it can be rationalized within the framework of MCT. The extended
version of the theory shows that the factorization theorem still holds even if ergodicity restoring processes close to
and below Tc are taken into account [141].
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Figure 12. (a) φs
q (t) (left ordinate) and φq (t) (right ordinate) versus time t for T = 0.47 and q = 6.9

(≈ maximum of S(q); see figure 5). The simulation data (circles) are compared with theoretical
formulae which (approximately) describe the decay of the scattering functions in different time
regimes: the exact short time expansion of φs

q (t) and φq (t) (dash–dotted lines; equations (41)
and (42)), the fit result for the MCT β process (solid lines; equation (25)) and the KWW function
(dashed lines; equation (28)). To obtain the parameters of the KWW function the fit interval was
limited to large times, where φs

q (t) < f sc
q /2 and φq (t) < f c

q /2. The values of the nonergodicity
parameters f sc

q and f c
q , as obtained from the MCT β analysis, are indicated by horizontal dotted

lines. (b) Comparison of φs
q (t) (filled circles) with the Gaussian approximation, equation (44) (solid

line), at q = 4. This q value closely agrees with the value q/
√

S(q) (�4.1) found for q = 6.9.
The comparison of φq (t) at q = 6.9 (open circles) with φs

q (t) at q = 4 is thus a test of the modified
Vineyard approximation (equation (45)). All data refer to T = 0.47.

Figure 12(b) shows that neither of these ansätze provides a satisfactory description. At
q = q∗ (�6.9), φq(t) relaxes more rapidly than φs

q̃(t) at the (smaller) wavevector q̃ (�4). φs
q̃(t)

in its turn also relaxes more slowly than the Gaussian approximation (44). These deviations
reveal the weaknesses of equations (44) and (45). Equation (45) presupposes that correlations
in the motion of monomers i and j can be accounted for by a mere shift of the wavenumber
in the incoherent scattering function. There is no obvious reason that such a mapping of
the collective dynamics onto the single-monomer dynamics is permissible for local processes
where intermolecular correlations should be pronounced. On the other hand, equation (44)
assumes that the displacement vectors ri (t) − ri (0) are for all times Gaussian distributed
random variables. This would, for instance, be true if the vectors were linear functions of a
random, white noise force. Again, there is no reason to assume that the force exerted on a
monomer by the surroundings has this stochastic character for all scales of time and length
(outside the transient microscopic regime where equation (43) is valid). Indeed, figure 12(b)
shows that φs

q(t) for q = 4 exhibits deviations from Gaussian behaviour in the α regime.
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A more detailed comparison between equation (44) and the simulation results for φs
q(t)

reveals that the extent of the deviations depends on q and t . The following general trends may
be pointed out [59]:

(i) For q � q∗, equation (44) only works for times before the β process. Its range of validity
increases with decreasing q . Yet even at q = 1, the smallest wavevector studied,deviations
are still clearly visible in the late α regime.

(ii) The neglect of some dynamic correlations in the Gaussian approximation makes
equation (44) decay faster than the simulated φs

q(t).

The deviations described in (i) and (ii) are not limited to the incoherent scattering function.
They are observed also for the coherent scattering function φ

p
q(t) of a chain, not only in

the Bennemann model [63], but also in atomistic simulations of polyethylene [166] and
polybutadiene [56, 167]. This implies that one has to be careful when fitting simulation
or experimental data for φ

p
q(t) to the Rouse model [2] of polymer dynamics because the

assumption of Gaussian distributed monomer displacements underlies this model. Deviations
from the theory or unsatisfactory values of the fit parameters can originate from the non-
Gaussian character of the displacements on the scales of length and time where the theory is
applied in practice (see also [32] for a topical review of this point).

β regime. Figure 12(a) shows that there is an intermediate time window (1 � t � 100) in
which φq(t) and φs

q(t) decay very slowly with time. The previous qualitative analysis identified
this time window with the β relaxation of MCT. For a quantitative analysis we revert to the
factorization theorem (equation (25))

φx
q(t) = f xc

q + hx
q

√
σ g(t̂) = f xc

q +
hx fit

q

ta
σ

g(t̂), (46)

where t̂ = t/tσ (tσ is defined in equation (22)) and hx fit
q = hx

q ta
0 . Here we introduced the

superscript ‘x’ to write the equation for incoherent and coherent scattering in a compact form:
‘x = s’ refers to incoherent scattering, while no superscript is utilized for coherent scattering.

Equation (46) contains four fit parameters, f xc
q , hx fit

q , tσ , and λ which fixes the shape of
g(t̂). These parameters may be determined in the following way [59]: we start the analysis
by focusing on φs

q(t). First, g(t̂) is calculated for different values of λ numerically, applying
the program used in [141]. The result is then inserted into equation (46) and the remaining
parameters are optimized. Iterating this procedure for other values of λ, q and T allows us to
find the range of λ which provides a good fit and is consistent with theoretical expectations.
The latter condition implies, for instance, that λ should be independent of T , that tσ should
obey equation (22) and that, for a given T , φs

q(t) must equal f sc
q for all q at the same time

t = tco(T ) (∝ tσ ) because g(t̂co) = 0 according to equation (46). More generally, we expect

φx
q(tco) = f xc

q for all q and ‘x’. (47)

This is an important equation: it allows us to determine first tco from the analysis of one
correlator, φs

q(t) in our case. The knowledge of tco then supplies an easy means to calculate
f xc
q for other correlators ‘x’. We applied this strategy to the coherent scattering function of a

chain, φ
p
q(t), and of the melt, φq(t), in [63]. The last remaining parameter, hx fit

q , may also be
determined by exploiting the analysis of φs

q(t). It can be obtained via

hx fit
q = ∂tφ

x
q(t)

∂t [g(t̂)/ta
σ ]

∣∣∣∣
t=tco

, (48)

where the derivatives are evaluated numerically [63].
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collective static structure factor S(q) for T = 0.47 is shown for comparison (dashed line; S(q) is
multiplied by 0.1). This figure is adapted from [63].

Figure 12(a) illustrates that the fit procedure described yields a good description of both
φs

q(t) and φq(t) in the β regime. The q dependence of f xc
q and hx

q derived from the fit
[59, 63] shares many qualitative features predicted theoretically [142, 143] and also found
in simulations of nonpolymeric glass formers, including simple liquids [107, 162, 168, 169],
diatomic molecules [170, 171], water [172], ortho-terphenyl [160, 161, 173] and SiO2 [174]:

(i) For q � q∗, f c
q closely follows the oscillations of S(q) (cf figure 13). For q � 11, we

find that f c
q ≈ f sc

q . The agreement between coherent and incoherent scattering becomes
better with increasing q .

(ii) f sc
q monotonically decreases with q , being well described by f sc

q = exp(−q2r2
sc) for

q � 8. Here, rsc is the Lindemann localization length (compare the discussion under the
heading ‘β process at the level of the single-particle motion’ in section 3.3.2). The value
of rsc is about 10% of the monomer diameter.

(iii) The critical amplitude hq is roughly in antiphase with f c
q for q � 10 (not shown). We

find that, in the same way as f c
q approaches f sc

q , hc
q ≈ hsc

q for large q .

In addition to these features the following particularities occur for our polymer model.
First, f p

q and hp
q , the MCT parameters corresponding to the coherent scattering function of a

chain, closely agree with their incoherent counterparts, f s
q and hsc

q , except for small wavevectors
(q < q∗) probing the size of a chain and beyond. Second, f c

q exhibits a pronounced shoulder
at q ≈ 4 (cf figure 13). As regards the aforementioned antiphase behaviour with respect to
f c
q , hq has a minimum at q = 4. These features have no parallel in S(q), are absent for simple

liquids, but appear to be present for the molecular glass former ortho-terphenyl [160, 161].

α regime. In experiments and simulations the KWW function (equation (28)) is commonly
found to provide a good description of the α relaxation except at short times (t � τK

q )
[18, 21, 22]. Viewed from the perspective of MCT this failure at early times (for T > Tc) is
a reflection of the von Schweidler process (equation (29)), governed by the exponent b which
is in general different from βK

q (see section 3.3.1). So, when analysing the α process via the
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Figure 14. Stretching exponents βxK
q versus q for the α decay of the incoherent (x = s), coherent

chain (x = p), and coherent melt scattering functions. The exponents were obtained from a three-
parameter fit ( f xK

q , τ xK
q , βxK

q ) of equation (28) to the simulation data for φx
q (t) at T = 0.47.

The fit interval was limited to φx
q (t) < f xc

q /2 (see footnote 15). The horizontal dashed lines
indicate the von Schweidler exponents derived from the analysis of the β relaxation by fitting the
simulation data to equation (25) (bβ fit = 0.75) and from an MCT calculation based on simulated
static properties; cf section 3.3.5 (bMCT = 0.6). For comparison, the collective static structure
factor S(q) at T = 0.47 is shown (dashed line; scaled to fit into the figure).

KWW function we should exclude contributions from the late β regime14. Different strategies
have been proposed for this purpose (see [63, 64] and references therein). One possibility
consists in fitting the late α process only [168, 170], by restricting the fitting interval to, say,
φx

q(t) < f xc
q /2.

This is the approach we have chosen here. Figure 12(a) exemplifies the results obtained at
q = q∗ for φs

q(t) and φq(t). As desired, the KWW function barely overlaps with the β process
and provides a good description of the final relaxation. These features are not limited to q∗.
Extension of the analysis to other wavevectors gives the following results [59, 64].

The dependence of the KWW amplitude f xK
q on q closely agrees with that of the

corresponding nonergodicity parameters for φs
q(t), φ

p
q(t), and φq(t) (cf figure 13).

From the three parameters of equation (28) the stretching exponent βxK
q is most plagued

by uncertainties of the fit15. This makes a quantitative interpretation problematic. Still some
trends appear to emerge (figure 14).

For q � q∗ the exponent βK
q derived from φq(t) is roughly in phase with S(q), whereas

βsK
q and β

pK
q , the exponents for φs

q(t) and φ
p
q(t), continuously approach a large q asymptote.

The asymptote appears to be smaller than bβ fit, the von Schweidler exponent derived from

14 If the β process is not excluded from the analysis, one incurs the risk of finding a temperature dependent stretching
exponent βxK

q . Such a result obviously violates the TTSP (equation (26)). See [52, 107] for good recent discussions
of this problem.
15 When fitting the α relaxation with the KWW function one has to take into account that some parameters are very
sensitive to the choice of the time interval utilized in the fit. In [64] we found the following trends. The KWW
amplitude f xK

q does not vary much with the fit interval. It is usually within 15% of the corresponding nonergodicity

parameter f xc
q . As f xK

q ≈ f xc
q , the KWW relaxation time can be determined either by φx

q (τ xK
q ) = f xK

q /e or by

φx
q (τ xK

q ) = f xc
q /e. We have employed the second prescription in figure 15. In contrast to f xK

q and τ xK
q , the stretching

exponent βxK
q appears to be more sensitive to the choice of the fit interval. Depending on q, deviations up to 30% are

possible. Particularly at large q (q � 15), where f xK
q � 0.2, big fluctuations occur (cf figure 6 of [64] and figure 9

of [59]).
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show the large q prediction of MCT (equation (31)), utilizing the von Schweidler exponent from
the fit to equation (25) (bβ fit = 0.75) and from an MCT calculation based on static input from
the simulation; cf section 3.3.5 (bMCT = 0.6). The dashed lines labelled ‘∼q−4’ and ‘∼q−2/x0 ’
indicate respectively equation (51) and equation (53) with x0 = 0.63 (2/x0 = 3.2). Sq (scaled and
shifted) is depicted for comparison (dashed line). Note that τK

q is roughly in phase with S(q) for
q � q∗. This figure is adapted from [64].

Table 1. MCT parameters resulting from fits to the asymptotic formulae of the β process (labelled
‘MD’; cf section 3.3.4) [59] and from ‘ab initio’ MCT calculations based on static input provided
by the simulation (labelled ‘MCT’; cf section 3.3.5).

Tc λ a b γ

MD 0.450 0.635 0.352 0.75 2.090
MCT 0.277 0.722 0.317 0.60 2.406

the fit to equation (25); a result seemingly in contradiction to equation (31). On the other
hand, in section 3.3.5 we will sketch an ‘ab initio’ comparison between simulation and theory,
suggesting a smaller value for b, bMCT = 0.6 (table 1). This value appears to be in better
agreement with the large q behaviour of βxK

q if one takes into account the following two points:
(i) βxK

q is hard to determine for q � 15 (see footnote 15). (ii) The limit limq→∞ βxK
q = b should

be approached from above—and not from below as in figure 14, provided that b = bβ fit—
according to theory [146] and other simulations [107, 160, 162, 172, 175].

Along with the convergence of βxK
q toward b, MCT also predicts τ xK

q ∼ q−1/b in the large

q limit (equation (31)) [147]. Figure 15 is indicative of such a common power law for τ sK
q , τ pK

q

and τK
q , if q � 10. The exponent is compatible with b = bβ fit , but harder to reconcile with

b = bMCT, contrary to what was found for βxK
q . A critical inspection of the results obtained for

βxK
q and τ xK

q must therefore come to the conclusion that it appears difficult to unambiguously
confirm at a quantitative level the large q behaviour of equation (31) in the range of the
wavevectors accessible to our simulation (see also [107, 160] for a discussion of this problem).

While the previous discussion focused on q � q∗—that is, on local length scales for which
our model resembles a simple liquid, justifying an interpretation using the MCT developed for
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these systems—figures 14 and 15 reveal interesting features for q < q∗ that are not present
for simple liquids. First, βK

q exhibits a maximum (or a shoulder [64]) at q ≈ 4 (figure 14)16.
This is the same range of q values for which f c

q has a shoulder (figure 13) and where τK
q

passes through a maximum (figure 15). (A maximum of τK
q for q < q∗ is also observed for

molecular glass formers [160, 161, 170].) Second, βsK
q does not continuously increase toward

1, as expected for simple liquids, but appears to tend to a smaller value (figure 14). Similarly,
τ sK

q does not cross over to the hydrodynamic limit τ sK
q ∼ q−2 for q < q∗, but exhibits a

stronger power law dependence (figure 15).

Interpretation via the Rouse model. The range ‘q < q∗’ probes length scales corresponding
to the structure of chain sections, of the overall chain size and beyond. So it appears natural
to search for an explanation based on the theory of polymer dynamics [2]. As long as there
are no entanglements, guidance for the interpretation of the incoherent and coherent chain
scattering may be obtained from the Rouse model [2, 3]. This model is a theory for a single
chain in an effective field. It views a chain as a sequence of monomers (‘beads’) which are
connected by harmonic springs with a force constant proportional to T . Each monomer of this
Gaussian chain is subject to a random force and a friction force, both of which are taken to
be identical for all monomers. While unrealistic on the local scale of a monomer, the Rouse
model is supposed to correctly address universal aspects of polymer dynamics which appear
for q � q∗ and t � τq∗ .

For φs
q(t) and φ

p
q(t) the model predicts that one has to distinguish between the

hydrodynamic regime, realized for q � 1/Rg, and the regime 1/Rg � q � q∗, which is
sensitive to the internal structure of the chain. More precisely, we have (x = s and x = p) [2],

ln φx
q(t) ∼

{−q2 Dt q � 1
Rg

,

−q2b2(t/τ0)
1/2 1

Rg
� q � q∗,

(49)

where b is the statistical segment length (b2 = limN→∞ R2
e /N), τ0 the relaxation time of a

monomer (equation (3)) and D denotes the diffusion coefficient of a chain.
The diffusion coefficient can be obtained from both the monomer MSD g0(t) and the MSD

g3(t) of the chains’ centre of mass (COM) via

D = lim
t→∞

g0(t)

6t
= lim

t→∞
g3(t)

6t
, g3(t) =

〈[
Ri(t) − Ri(0)

]2
〉
, (50)

where Ri(t) denotes the position of the COM of the i th chain at time t .
Equation (49) implies

βxK
q =

{
1 q � 1

Rg
,

1
2

1
Rg

� q � q∗,
and

τ xK
q ∼ q−2/βxK

q ∼
{

q−2 q � 1
Rg

,

q−4 1
Rg

� q � q∗.

(51)

16 In the limit q → 0, the stretching of φq (t) is pronounced; βK
q becomes very small, βK

q ≈ 0.3 for q � 2 (figure 14).
Such a small KWW exponent for coherent scattering is unexpected from MCT calculations for hard spheres [146].
It might indicate that the α relaxation of collective density fluctuations on large length scales is more complicated
in polymer melts than in simple liquids. On the other hand, our simulation data for small q should be considered
with care. As q = 2π/L ≈ 0.6 is the smallest q value compatible with the linear dimension L (≈10.5 [59]) of the
periodic simulation box, the relatively few reciprocal wavevectors available for q � 2 lead to unsatisfactory statistical
precision for φq (t), and the possibility of finite size effects cannot be excluded [63, 64]. On the simulation side, larger
systems should be studied to scrutinize the relaxation for small wavevectors.
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The key feature of this equation is that there is a stretched exponential decay that is related not
to the glass transition, but to chain connectivity. The decrease of βsK

q and β
pK
q as well as the

power law increase of τ sK
q and τ

pK
q , observed in figures 14 and 15 for q < q∗, are indications

of this Rouse-like relaxation.
We used the term ‘Rouse-like’ deliberately in the preceding sentence. It shall be stressed

that in our simulations [59, 61] we find both accord with Rouse predictions—e.g., the
Rouse modes are orthogonal for all t—and deviations from them—e.g., the Rouse modes
are stretched with stretching exponents depending on the mode index. Such deviations are
not uncommon. They are also observed in other simulations of nonentangled polymer melts
using e.g. atomistic models [32], a possible reason being that the separation of length scales
1/Rg � q � q∗ required in equation (49) cannot be realized without entanglements setting
in17. If entanglements should be avoided, the chain length must be limited to N � Ne; but
then, finite N corrections to the Rouse behaviour should be expected.

Within the framework of MCT these corrections have recently been discussed for a melt
consisting of Gaussian chains whose monomers interact via a hard sphere potential [176]. For
N = 10, the chain length studied in our simulations, the theory semiquantitatively reproduces
the deviations from Rouse behaviour observed in our simulations [59, 61].

These deviations have an impact on φx
q(t) and the q dependence of the corresponding

relaxation times. Instead of the Rouse prediction g0(t) ∼ √
t for 1 � g0 � R2

g [2] we
[59, 61]—and also other authors performing simulations [32]—find the monomer MSD to
increase with a larger (effective) exponent (see also figure 21),

g0(t) ∼ t x0 with x0 = 0.63 ± 0.03. (52)

The monomer MSD will determine φs
q(t) if the Gaussian approximation equation (44) applies.

This should be the case for q � q∗. So we expect

ln φs
q(t) ∼ −q2t x0 ⇒ τ sK

q ∼ q−(2/x0)≈−3.2, (53)

which appears to agree with the simulation data better than the Rouse prediction (51); cf
figure 15. (Note that neutron scattering experiments typically find smaller values for x0, i.e.,
0.4 � x0 � 0.57 [47, 48].)

Critique of the quantitative analysis. The previous sections presented a quantitative
comparison of the simulation data with the leading order results for the α and β relaxations
(section 3.3.1). At this point, it may be appropriate to pause and to comment on the strengths
and weaknesses of the analysis.

The chief advantage of the analysis is obvious. It provides detailed,otherwise unobtainable
quantitative information about the dynamics of the glass former (above Tc). Extracting the
q dependence of the relaxation allows for a comparison with the extensively studied hard
sphere system [142, 143, 146, 177]. MCT proposes the hard sphere system as the archetypal
example of a glass-forming liquid. The reason is as follows: different glass formers certainly
differ in their intermolecular interactions. But they all have an amorphous structure, being
characterized by a structure factor that is qualitatively similar to the hard sphere S(q). It is
S(q) and related quantities that entirely determine the dynamics, according to MCT. So, the
hard sphere system should be a simple, but pertinent representative for the class of glass-
forming liquids. Confronting the results known for this system with those obtained from a
simulated or an experimentally studied glass former helps to shape our understanding of which

17 In the simulations the influence of entanglements on the dynamics may be suppressed by allowing the chains to
cross. Then, Rouse-type relaxation is observed even for large N [381, 382].
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aspects of the relaxation may be related to the picture proposed from MCT and which of them
transcend the theory18.

The main weakness of the analysis is that it hinges on an intricate fitting procedure. Three
(KWW analysis) or four (β analysis) parameters have to be optimized simultaneously. In
practice, the range of validity of the asymptotic formulae, equations (20)–(31), is not known a
priori. Even if one uses the temperature nearest to Tc, which appears to be free from ergodicity
restoring processes that the ideal MCT ignores, the distance to Tc may be not close enough to
allow for a precise determination of λ [178]. In addition, we have to decide on the time interval
where the fit will be performed. The choice of this interval will—or at least can—influence
the numerical values of the fit parameters. At several instances, we pointed out that the KWW
fit suffers from that problem. But the same concerns also apply to the β analysis.

Both problems—the difficulty of determining λ and the influence of the fit interval—are
known. They are discussed in the literature (see e.g. the comment and reply in [179, 180]), but
may be hard to avoid in practice [151, 178]. Let us give a case in point, our own analysis.

The analysis of the β process using equation (25) was guided by the idea that the initial
part of the plateau region should be describable in terms of the short time behaviour of the β

correlator G(t) for t0 � t � tσ ∝ tco. As φx
q(tco) = f xc

q (equation (47)), our fit procedure
tends to place the nonergodicity parameter in the centre of the plateau region. This analysis
seems to be problematic for MD results. Recent simulation studies, comparing for the same
model the deterministic MD with an overdamped stochastic dynamics, reveal that the initial
decay of G(t) can barely—if at all—be observed in MD simulations. It is largely hidden by
the microscopic transient (cf equations (41), (42)) [106, 107]. Thus, a β analysis of MD data
should not try to place tco in the centre of the plateau region,but closer to the initial drop of φx

q(t)
from 1. This implies that our results for f x

q are too small. A posteriori, this becomes evident
from figure 11. There the TTSP is still fulfilled for φq(t) > f c

q , an apparent contradiction to
equation (29). This inconsistency could have been avoided if the cross-check with the TTSP
had been done. So, information from the α relaxation is crucial for guiding the β analysis (cf
appendix A). A similar conclusion was also drawn in [178].

3.3.5. Quantitative comparison based on static input obtained from the simulation. Of
course, the uncertainties to be attached to the MCT parameters estimated from the previously
discussed fits—even if the fits are judiciously carried out—raise concerns that are hard to
dispel. An avenue around this problem would be to avoid the fitting altogether. In principle,
this is possible. MCT establishes a link between the equilibrium structure of a glass former,
encapsulated in S(q) and related quantities, and its dynamics. Not only do the parameters of
the asymptotic formulae (λ, f c

q etc) have precise microscopic definitions, but also the full time
dependence of e.g. φq(t) may be calculated from the structure (outside the short time regime).
This opens the possibility for an ‘ab initio’ comparison between the theoretically predicted
and the simulated dynamics.

There is a powerful idea here,albeit one whose applicability is limited to systems for which
the theory has been developed and the required static input has been obtained with sufficiently
high precision. This restrictive condition has, up to now, allowed for a few applications only.
At present, they include a model for amorphous SiO2 melts [181], a binary LJ mixture [149],
a hard sphere mixture [162], a model for ortho-terphenyl [160, 161], and a hard sphere(-like)
system [107]. Certainly, the potential of this approach has not been fully explored yet.

18 In this respect, the simulation results for cis–trans 1,4-polybutadiene, presented in figure 3, do not appear to fit
into the MCT picture. The chemically realistic version (CRC) of the model has the same intrachain structure factor
and collective structure factor as the model without a torsional potential (FRC). However, the dynamics of the two
models are different, the FRC model relaxing faster than the CRC model. It is challenging to see whether this apparent
contradiction to the structure–dynamics correlation proposed from MCT could be reconciled (or not) with the theory.
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Here, we will present first results of such an ‘ab initio’ comparison between the simulated
φq(t) and the full solution of a recently proposed extension of MCT to nonentangled polymer
melts [176]. Before turning to this comparison we sketch the theory and the numerical tests
of some of its assumptions.

Theory. The MCT for nonentangled melts [176] rests on the conceptual framework developed
for simple liquids [23, 24, 139]. It also deploys collective density fluctuations to describe the
structural relaxation. However, the core variables are not the average density fluctuations (i.e.,
φq(t)), but their (non-normalized) site-resolved counterparts (a, b = 1, . . . , N),

Fab(q, t) = 1

n

〈
ρa(q, t)∗ρb(q, t)

〉
(n = total number of chains)

= 1

n

〈 n∑
i, j=1

exp
{−iq · [ra

i (t) − rb
j (0)]

}〉
. (54)

Appealing back to the notation employed in section 3.2 we denote by ra
i (t) the position of

monomer a in chain i at time t . Furthermore, we see from equation (8) that the initial value
of Fab(q, t) is given by Fab(q, 0) = Sab(q) = wab(q) + ρhab(q). Fab(q, t) thus comprises
intrachain (wab(q, t)) and interchain (hab(q, t)) contributions.

The function Fab(q, t) may be identified as the (a, b) element of the N × N matrix F(q, t).
By means of the Zwanzig–Mori formalism [119] an exact equation of motion for F(q, t) may
be derived [182]. Specified to the element Fab(q, t) it reads

∂2
t Fab(q, t) +

N∑
x=1

�2
ax(q)Fxb(q, t) +

N∑
x=1

∫ t

0
dt ′ Max (q, t − t ′)∂t ′ Fxb(q, t ′) = 0, (55)

where

�2
ax(q) = q2v2 S−1

ax (q) with v2 = kBT/m(= T in our units); (56)

here S−1
ax (q) denotes the (a, x) element of the inverse of the structure factor matrix S(q).

Equation (55) corresponds to the equation of motion of a damped harmonic oscillator whose
‘friction coefficient’ Max (q, t) depends on the full history of the motion of all monomer pairs
(a, x). The matrix M(q, t) is hence referred to as the ‘memory kernel’.

The remaining task is to derive an expression for M(q, t). It is that bit which cannot
be handled without approximations [23, 24, 139]. In the framework of MCT the memory
kernel is commonly split into a regular contribution and a ‘slow’ contribution: M(q, t) =
Mreg(q, t) + Mslow(q, t) [162].

The regular contribution is supposed to embody memory effects present in the normal high-
T state of the liquid (where Mslow is negligible). Mreg is assumed to condition the dynamics
beyond the (deterministic) short time regime (equation (42)), to lead to a fast decay of density
fluctuations and to vary only weakly with T upon cooling. In this sense, it is ‘regular’. At
all T , Mreg aggregates only contributions from rapidly fluctuating forces. Because no slow
relaxation can result from it, we may pose Mreg(q, t) = 0 (see however the recent study [149]
in which the regular kernel was not dropped).

There must also be slow contributions to the fluctuating forces, which ultimately lead
to the kinetic arrest in a glassy structure. Mslow is supposed to contain them. We may
regard the memory kernel M(q, t) as a force–force correlation function [23, 24, 139]. In-
teraction forces involve pairs of particles (for pair potentials) or—transcribing this idea
to the level of collective variables—pairs of densities. So Mslow should be express-
ible in terms of the average of the product of four density fluctuations, schematically
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〈ρ(q1, t)∗ρ(q2, t)∗ρ(q3, 0)ρ(q4, 0)〉. The core approximation of MCT is now to replace this
four-point correlation function with a product of two-point correlation functions. Schemati-
cally again, 〈ρ(q1, t)∗ρ(q2, t)∗ρ(q3, 0)ρ(q4, 0)〉 ∼ 〈ρ(q1, t)∗ρ(q3, 0)〉 〈ρ(q2, t)∗ρ(q4, 0)〉 +
(3 ↔ 4) [23, 24, 139].

More precisely, the memory kernel is approximated by Mab(q, t) ≈ M slow
ab (q, t) ≈

MMC
ab (q, t) with [182]

MMC
ab (q, t) = ρv2

(2π)3

N∑
x,y=1

∫
d3k

[
k2

z cax(k)cby(k)Fxy(k, t)Fab(p, t)

+ kz pzcax(k)cby(p)Fxb(k, t)Fay(p, t)
]
,

(57)

where p = q − k and ρ = n/V is the chain density (equation (7)). The memory kernel (57)
is formally identical to the MCT expression obtained for a N-component mixture containing
n particles of each component. The intramolecular constraints due to chain connectivity enter
this equation only via the Ornstein–Zernike relation for the direct correlation functions cab(q)

(equation (14)).
Equations (55)–(57) furnish a system of closed equations for F(q, t), provided that the

matrices S(q) and c(q) are known. From a computational point of view, the solution is,
however, demanding; the equations are still of order N2, and N may become large. It is at this
point where the analysis of the static structure, presented in section 3.2, will help us to develop
further approximations.

(i) First approximation. Figure 6 showed that the equivalent-site approximation
(equation (15)) is well justified for the Bennemann model. So we insert cab(q) = c(q) in
equation (57) and obtain

MMC
ab (q, t) = ρv2

(2π)3

∫
d3k

{
k2

z c(k)2

[ N∑
x,y=1

Fxy(k, t)

]
Fab(p, t)

+ kz pzc(k)c(p)

[ N∑
x=1

Fxb(k, t)

][ N∑
y=1

Fay(p, t)

]}
. (58)

(ii) Second approximation. Equation (58) reveals that the equivalent-site approximation does
not suffice to simplify the problem. It is still of order N2. Progress is made if we invoke a
further approximation, motivated by PRISM theory. PRISM theory predicts that the site
dependent structure factor Sa(q) can be expressed as

Sa(q) =
N∑

b=1

Sab(q)
PRISM=

[∑N
b=1 wab(q)

w(q)

]
S(q), (59)

and our simulation furthermore suggests that the factor [ · ] is almost independent of a.
That is, Sa(q) � S(q) (cf figure 16). Assuming that this static property also holds for the
dynamics, we may write

Fa(q, t) =
N∑

b=1

Fab(q, t) ≈ F(q, t). (60)

Equation (60) is an important intermediate result. It allows us to derive a closed MCT equation
for the average collective density fluctuations F(q, t), i.e., for

F(q, t) = 1

N

N∑
a,b=1

Fab(q, t), (61)
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Figure 16. Comparison of the static structure factor S(q) (circles) and the site dependent static
structure factor Sa(q) for a = 1 (dashed line), a = 2 (solid line) and a = 5 (dotted line). Sa(q)

is defined by the first equality of equation (59). The simulation data for both S(q) and Sa(q) were
obtained at T = 0.47.

whose initial value is F(q, 0) = S(q) (cf equations (54) and (11)). To this end, we sum
equation (55) over a and b and divide by N . Then, we insert equations (58) and (60). This
gives the following equation of motion for φq(t) = F(q, t)/S(q):

∂2
t φq(t) + �2

qφq(t) + �2
q

∫ t

0
dt ′ mMC

q (t − t ′)∂t ′φq(t
′) = 0, (62)

where �2
q = q2v2/S(q) (cf equation (42)) and

mMC
q (t) ≈ 1

2

∫
d3k

[
ρm

(2π)3q4
S(q)S(k)S(p)

{
q · [

kc(k) + pc(p)
]}2

]
φk(t)φp(t) (63)

with p = q − k and ρm = nN/V (equation (7)).
Equations (62) and (63) merit some comments:

(i) For large times, the inertia term, ∂2
t φq(t), can be neglected. Then, �2

q drops out and
so the relaxation of φq(t) at long times does not depend on the underlying microscopic
dynamics. For instance, it should be the same irrespective of whether the system evolves
according to Newtonian or Brownian dynamics and it should not depend on inertia
parameters. These predictions have been verified in recent simulations on simple glass
formers [106, 107, 183].

(ii) Equations (62) and (63) are formally identical to those for monatomic liquids [142].
Polymer-specific effects, such as local stiffness of the chain backbone or chain length
N , enter the relaxation only via the direct correlation function, the structure factor and
the monomer density. These static equilibrium features fully determine the long time
dynamics of the melt.

(iii) Equation (63) shows that the memory kernel contains the factor S(q)S(k)S(p). So, the
slow dynamics close to Tc should be mainly driven by wavevectors close to q∗ [182],
because there, S(q) is largest and the strongest dependence on T occurs (cf figure 5).

Comparison with the simulation: first results. The analysis [184] begins with the
determination of the critical temperature from equations (62) and (63). We refer to this
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Figure 17. Main figure: wavevector dependence of the nonergodicity parameter (NEP) f c
q

determined from φq(t) by means of fits of equation (46) to the simulation data (circles) and by
MCT calculations based on structural input from the simulation (solid line). S(q) obtained from
simulation at T = 0.47 (dashed line) and the extrapolated S(q) at T MCT

c ≈ 0.277 (dash–dotted line)
are shown for comparison (the structure factors are multiplied by 0.1). The vertical arrows indicate
qC = 3.4 (maximum of SC(q); see inset), and q∗ = 6.9 (≈ maximum of S(q); see figure 5). Inset:
plot of the collective structure factor of the centres of mass of the chains SC(q) (equation (65))
versus q for all temperatures simulated (solid lines). The dashed line shows the approximation
to SC(q) according to PRISM theory [67]. The arrow indicates the position of a weak maximum
occurring in the simulated SC(q) at qC � 3.4.

temperature as T MCT
c to discriminate it from the critical temperature T MD

c � 0.45 derived
through fits of the asymptotic MCT formulae (section 3.3.4). T MCT

c may be deduced from the
long time limit φq(t → ∞) = fq which satisfies the relation

fq

1 − fq
= Fq({ fk}) with mq(t) = Fq [φq(t)]. (64)

The solution to this equation bifurcates at T MCT
c . For T > T MCT

c , it is fq = 0, while fq(T ) > 0
for T � T MCT

c (cf equation (20)). From this feature, we obtain the critical nonergodicity
parameter via fq(T MCT

c ) = f c
q .

The technical procedure for turning this general strategy into a practical method is
described in [23, 24, 142] and has been applied to simulation results e.g. in [161, 169]. It
involves an iterative solution of equation (64) which proceeds from the ‘glass side’ (T < T MCT

c )
toward T MCT

c . The analysis is of course predicated upon having the corresponding static input
at hand. As long as T MCT

c lies in the range of temperatures for which equilibrated simulation
data are available, the required static input can be determined accurately. However, what if
T MCT

c turns out to be below the lowest equilibrated temperature? This problem occurred in
our analysis. In this case, one is inevitably faced with the task of determining the static input
by extrapolation from the liquid side. We utilized the simulated S(q) at T = 0.47 and 0.48
to carry out the extrapolation. (Due to its very weak dependence on T it was not necessary to
include the intrachain structure factor in the extrapolation; cf section 3.2.) The extrapolation
provides S(q) at lower T which is inserted in equation (64) to compute T MCT

c . The result is
T MCT

c ≈ 0.277.
The need to resort to extrapolations is certainly less than ideal. The resulting S(q) may

be qualitatively wrong. Fortunately, this concern can be dispelled. Figure 17 depicts S(q)

from the simulations at T = 0.47 and the extrapolated S(q) at T MCT
c . The latter exhibits the

following features: comparing to S(q) at T = 0.47, the peak position q∗ is shifted to larger
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wavevectors, the amplitude S(q∗) is higher and the subsequent oscillations for q > q∗ are more
pronounced. These features agree with the trends observed at T � 0.47 (cf figure 5). One
can see this as testimony that the extrapolation was carefully carried out. No qualitative error
appears to be introduced. On the other hand, quantitative differences between the extrapolated
S(q) and the real S(q)—resulting from an analysis of equilibrated configurations at T MCT

c —
cannot be excluded. To what extent are these uncertainties problematic? No definite answer
can be given at present for the polymer model studied. Related work on hard sphere systems
suggests that quantitative differences in S(q) may alter the theoretical value of the critical
point and the precision of the predicted f c MCT

q [107, 162]. But they appear to have only a
weak influence on the exponent parameter λ (cf equation (24)) [107]. So we should expect the
uncertainties for T MCT

c and f c MCT
q to be larger than those to be attached to λMCT.

Figure 17 compares the theoretical prediction for fq(T MCT
c ) = f c MCT

q with the simulation
results from [63] (cf figure 13). For q � q∗ = 6.9 we find a high degree of accord between
theory and simulation. This agreement, particularly for q∗, is an important argument in favour
of the theoretical approach because it is the intermolecular packing at wavelengths ∼1/q∗
which mainly drives the slowing down of the structural relaxation as the melt is cooled toward
Tc. On the other hand, the agreement between theory and simulation is not good for q ≈ 4.
The theory underestimates f c

q and does not reproduce the shoulder present in the simulation
data.

This disagreement is a possible cause of the finding T MCT
c < T MD

c . Apparently, there are
slow modes around q ≈ 4 which are not captured by the theory. These modes may couple to
the dynamics of other wavevectors, leading to a slowing down of the structural relaxation in
the simulation. The only way in which the theory can cope with this additional coupling is to
strengthen the cage effect. That is, to increase the first peak of S(q). This requires cooling to
lower T and, thence, a smaller critical temperature19.

If this is so, how could one then introduce the missing coupling into the theory? The
inset of figure 17 suggests an avenue. It could be related to the packing of the centres of mass
(COMs) of the chains. The shoulder in f c

q occurs close to a weak peak present in the static
structure factor SC(q) of the COMs at qC = 3.4. By analogy to section 3.2, we define SC(q)

as

SC(q) = 1

n

〈 n∑
i, j=1

exp
[ − iq · (Ri − R j)

]〉
, (65)

where Ri denotes the COM position of the i th chain in the melt. One possibility for improving
the theory could thus consist in including the COM as a further interaction site (see [160] for
an implementation of this idea in related work).

However, no improvement was found in our case. The reason may be that, unlike S(q),
SC(q) is practically independent of T and already close to 1 for qC (cf figure 17 and [67]).
Viewed from the perspective of MCT, where the T dependence of the static structure triggers
the glassy slowing down on cooling, one is led to conclude that SC(q) is not a pertinent variable.
The static coupling between the COMs is too weak to make an impact on the glassy dynamics

19 The underestimation of T MCT
c can have yet another origin. The theory utilized the (commonly employed)

‘convolution approximation’ [24]. This approximation replaces the structure factor S3(q, k, p) for triplets of
monomers by the product S(q)S(k)S(p). The replacement appears to be well justified for simple glass formers
[181, 383], but not for structurally more complicated ones, such as ortho-terphenyl [161] and silica [181]. In our
model we find, analogously to the simple liquids case, that the convolution approximation works quite well, except at
intermediate q—that is, just in the interesting region close to q∗ [67]. Unfortunately, it is hard to obtain statistically
sufficiently accurate results for S3 in order to estimate to what extent these deviations could be important in a mode-
coupling calculation.
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Figure 18. Comparison of the simulation data for φq (t) at q = 6.9 and T = 0.47 (circles) with
various MCT predictions. (a) The solid line is the α master curve; the filled circles depict the
solution including both the α and β processes for ε = (T MD

c − T )/T MD
c = −0.046 (T MD

c � 0.45).
The horizontal dotted line shows the MCT prediction for the nonergodicity parameter f c MCT

q .
All theoretical results are based on the static input from the simulation. (b) The exact short time
expansion from figure 12 is included (dash–dotted line). For longer times the simulation data
are compared with an MCT fit using only the factorization theorem (solid line) [63], an MCT fit
including also the next-to-leading order correction to the factorization theorem with short time
coefficients calculated from the long time coefficients (dashed line) [63] and the MCT ‘α + β’
prediction from panel (a) (filled dots). The nonergodicity parameters from the MCT fit, f c fit

q , and

f c MCT
q from panel (a) are shown as horizontal dotted lines.

(see also [161] for a related discussion). At present, how to improve the theory around q ≈ 4
remains elusive.

On the other hand, MCT and simulation closely agree with one another for q � q∗. In
the following, we therefore focus on q∗ for analysing the decay of φq(t) in more detail.

Figure 18(a) compares the simulation results for φq(t) at q∗ = 6.9 and T = 0.47 with
MCT predictions in the β and α regimes. The static input at T MCT

c suffices for computing
the shape of the α master curve (equation (26)). The master curve depends on the scaled
time t̃ = t/t ′

σ = (t/t0) |σ |γ . As the MCT calculations yield σ and γ (equations (21) and
(23)), the only unknown is the matching time t0. To eliminate t0 we plot in figure 18(a) the α

master curve and the simulation data versus t/τ ∗
q . Here, τ ∗

q denotes the relaxation time defined
independently from the α master curve and the simulation data via the condition φq(τq∗) = 0.1.
Figure 18(a) reveals that, matching theory and simulation at one point—forφq = 0.1—suffices
for describing the α decay of the simulation data over about two decades in time.

To extend the description to shorter times we also have to take the β process into account.
This implies solving the MCT equations at a finite distance, ε = (Tc − T )/Tc, from the
critical point [24]. In figure 18(a) we utilized the distance corresponding to the simulation
data, ε = −0.046. The inclusion of the β process extends the description for about one decade
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to shorter times. For still shorter times, eventually belonging to the microscopic regime
(t/τq∗ � 10−4), deviations are expected because the theory neglects the regular kernel (see
the discussion under the heading ‘Theory’ in section 3.3.5). By the same token, it is also not
fully adequate in the regime of crossover between the microscopic transient and the β process.
The dynamics in the crossover regime (10−4 � t/τq∗ � 10−3) is affected by the simulation
method; it depends e.g. on whether MD or a stochastic dynamics is employed (cf figure 3
of [106, 107]) and also on inertia parameters [183].

Figure 18(b) recapitulates the results from the comparisons between simulation and MCT
presented so far. The figure depicts the β fits to the simulation data, with and without corrections
to the factorization theorem (cf section 3.3.4), and the just discussed analysis based on the static
input. One clearly sees that in the β regime the two analyses yield descriptions of comparable
quality, especially if corrections to the factorization theorem are taken into account. There
is, however, one argument which pleads for the analysis based on the static input. It predicts
a nonergodicity parameter f c MCT

q that is larger than the fit result f c fit
q . If we go back to

figure 11, we now find that f c MCT
q lies above the α master curve, no longer violating the TTSP

in contrast to f c fit
q . Figure 18(b) thus reveals the intricacies of the β analysis via the asymptotic

formulae. For distances ε, typical of simulations, the choice of a too small value for f c fit
q may

be compensated by weaker stretching, i.e., by a larger von Schweidler exponent b (cf table 1).
A similar conclusion was also drawn in [178], stressing the importance of including features
from the α relaxation to guide the β fits (cf appendix A).

3.3.6. Influence of the thermodynamic path: a case study. A key prediction of MCT is
that the low T dynamics is conditioned by the equilibrium properties at the critical point.
The critical point is the thermodynamic state of the liquid at Tc. For the Bennemann
model this state is fully specified—as for any one-component, one-phase system—by two
intensive variables. We may choose temperature and pressure. For p = 1 the critical
point is located at p = pc = 1, Tc � 0.45. This corresponds to the monomer density
ρm(pc, Tc) = ρmc � 1.042.20 We may invert the last equation, Tc = Tc(pc, ρmc). This
relation suggests the following interpretation: performing a constant-pressure simulation at
pc or a constant-volume simulation at ρmc should yield the same critical temperature and so,
according to section 3.3.1, also the same dynamic features, in particular the same value for λ

(equation (24)).
We tested this idea in [60] by comparing simulation results at constant pressure ( p = 1)

with those at constant volume (ρm = 1.042). Within the numerical uncertainties, we do
indeed find the same Tc and λ. Figure 19 provides an example. Its main part depicts the T
dependence of the relaxation times associated with φs

q(t) and the second Legendre polynomial
of the orientational correlations of the end-to-end vector Re(t):

φE2(t) = 3
2

[〈[
e(t) · e(0)

]2
〉
− 1

3

]
, e(t) = Re(t)

|Re(t)| . (66)

Figure 19 reveals that there is a T interval where the relaxation times increase as

τ (T ) ∝ (T − Tc)
−γ , (67)

20 At p = 1, Tc � 0.45 and ρmc � 1.042. For other pressures different values for the critical temperature and
density are obtained. Nevertheless, we found that c = ρmcTc

−1/4 is, to a good approximation, constant for all
pressures studied (c = 1.27 ± 0.02) [60].  ∝ ρm T −1/4 is the only relevant parameter needed to fully specify
the thermodynamic state of a 3D soft sphere system whose repulsive interaction is proportional to r−12 [119]. This
finding illustrates the important role that excluded volume interactions play close to the MCT critical point. The
same observation has not only been made for glass-forming soft sphere [384] or LJ systems [169], but also e.g. in
experiments [385] and simulations [160] of ortho-terphenyl.



Topical Review R895

10-2 10-1 100

T-Tc

10
-1

10
0

101

10
2

10
3

10
4

10
5

τ qτs
τ E

2

E2

q=3.0

q=6.9

q=9.5

E1 E2 B2 3 5 7 9 11
q

1.6

1.8

2.0

2.2

2.4

2.6

γ

γD

γβ-fit

γMCT

γMCT

γβ-fit

Figure 19. Temperature dependences of different relaxation times, obtained from simulations at
constant pressure (open symbols) and at constant volume (filled symbols). The constant-pressure
simulations were performed at p = 1, leading to the density ρm = 1.042 at Tc = 0.45. We
utilized this density in the constant-volume simulations. τ s

q and τE2 are the relaxation times of the
incoherent scattering function φs

q(t) (equation (40)) and of the second Legendre polynomial of the
normalized end-to-end vector φE2(t) (equation (66)), respectively. The relaxation times are defined
by the condition φx(τx) = 0.3. The constant-pressure data are multiplied by an arbitrary factor so
as to optimize the superposition with the constant-volume results. (The factors are: 14.3 (E2), 16.5
(q = 3), 18.7 (q = 6.9) and 19.8 (q = 9.5).) The dashed lines indicate the γ values obtained from
the MCT fit to the β regime (γβ fit = 2.09; section 3.3.4) and from the ‘ab initio’ MCT analysis
(γMCT = 2.406; section 3.3.5). Inset: values of γ determined from the simulations at p = 1 (open
symbols) and at ρm = 1.042 (filled symbols) via fits to equation (67). On the abscissa, we quote the
quantities from which γ was calculated (E1 and E2 = the first and second Legendre polynomials of
the normalized end-to-end vector, B2 = the second Legendre polynomial of the normalized bond
vector, 3 � q < 12 = τ s

q for these q values). The horizontal dotted lines indicate γMCT, γβ fit and
the value obtained from a fit to the temperature dependence of the diffusion coefficient of a chain
(γD = 1.84). This figure is adapted from [60].

with Tc and γ being the same for the two thermodynamic paths. This agrees with the expectation
from ideal MCT (cf equations (23) and (27)). However, the figure also reveals two points of
disagreement, the first expected, the second problematic.

First, the power law (67) does not apply for all T . Both at low and at high temperature
deviations occur. These deviations from the ideal behaviour are expected (see the discussion
at the end of section 3.3.1): at high T the asymptotic formulae are no longer valid; very close
to Tc ergodicity restoring processes, missing in the ideal theory, become dominant.

Second, if we fix Tc—as is done in figure 19—and determine γ by including in the fit the
maximum number of temperatures compatible with equation (67), we find that γ depends on
the quantity under consideration (inset of the figure). This dependence is unexpected within
MCT and poses a problem. More precisely, the inset of figure 19 shows that γ decreases
with increasing length scale, eventually converging toward γD , the exponent obtained for
the diffusion coefficient of a chain [64]. The observation that relaxation processes on large
length scales appear to present a weaker slowing down than those on scales q � q∗ is not
particular to the polymer model studied. It is also found in simulations of simple glass-forming
liquids [107, 162, 185].
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A feature that is particular to polymers is the correlation functions associated with
reorientations (of parts) of the chain backbone. Figure 19 provides examples in terms of
the first or second Legendre polynomials of the bond or end-to-end vectors. When analysing
the corresponding relaxation times via equation (67) we find γ values that agree, within the
error bars, with γD. How can we understand that the orientational dynamics of a chain is
related to density fluctuations in the small wavenumber limit (cf equation (49))?

Polymer physics suggests a clue to the answer. The dynamics of nonentangled chains
is usually discussed in terms of the Rouse model (see the heading ‘Interpretation via the
Rouse model’ in section 3.3.4 or [2]). The basic variables of the model are the ‘Rouse
modes’, the cosine transforms of the position vectors to the monomers of a (tagged) chain
s, {ra

s }a=1,...,N [186],

Xp(t) = 1

N

N∑
a=1

ra
s (t) cos

(a − 1
2 )pπ

N
(p = 0, . . . , N − 1). (68)

In the framework of the Rouse model the modes obey 〈Xp(t)·Xp′(0)〉 ∝ δpp′ . We verified this
orthogonality for the Bennemann model [61]. This feature suffices to show that orientational
correlation functions, such as the first Legendre polynomial of the bond and end-to-end vectors,
may be expressed as a superposition of Cp(t) = 〈Xp(t) · Xp(0)〉 for p > 0 [2]. On the other
hand, Cp(t) is related to the density correlator of a single chain,

F s
ab(q, t) =

〈
exp

{
−iq · [

ra
s (t) − rb

s (0)
]}〉

, (69)

through

Cp(t) = 1

N2

N∑
a,b=1

〈
ra

s (t) · rb
s (0)

〉
cos

(a − 1
2 )pπ

N
cos

(b − 1
2 )pπ

N

= lim
q→0

[
1

N2

N∑
a,b=1

[
3

q2
F s

ab(q, t)

]
cos

(a − 1
2 )pπ

N
cos

(b − 1
2 )pπ

N

]
. (70)

This completes our line of reasoning. As the relaxation of the Rouse modes is determined by
the small q limit of single-chain density fluctuations, we expect related orientational correlation
functions to be so too.

3.4. Spatially correlated dynamics: analysis of clustering phenomena

The differences between the simulation and MCT, discussed in connection with figure 19,
may be interpreted in another way. MCT predicts that all relaxation times—as well as the self-
diffusion coefficient D and the viscosity η—have close to Tc the same temperature dependence
as t ′

σ (equation (27)). Figure 19 indicates a violation of this coupling to one underlying
timescale t ′

σ . The problem is recapitulated in figure 20. While incoherent and coherent
relaxation times are proportional to one another on the local scale q∗, the proportionality
breaks down on cooling toward Tc as q decreases; the corresponding relaxation times prove to
be smaller than expected. Figure 20 bears a conspicuous resemblance—albeit for T > Tc—to
the breakdown of the Stokes–Einstein relation D ∼ T/η often found in experiments near
Tg [188, 189] (for a comparative discussion of experimental results see e.g. [18]; for recent
results on nonentangled polystyrene melts see [187]).

A popular explanation of the different T dependences of D and T/η invokes the
existence of spatially heterogeneous dynamics (‘dynamic heterogeneity’; for general reviews
see [190–193]; for a discussion in the context of chemically realistic polymer models see [32]).
The term ‘dynamic heterogeneity’ circumscribes the idea that a glass former near Tg contains
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q∗ (squares) and 1/τE2 (crosses) versus the collective α relaxation

time τq∗ . τ s
q∗ and τE2 are taken from figure 19; τq∗ is taken from [64]. The highest (T = 0.7)

and lowest (T = 0.46) temperatures are shown by arrows (remember that Tc � 0.45; the other
temperatures are (from left to right): T = 0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47). The data for 1/τ s

q∗
and 1/τE2 are divided by some factor (= 494 for τ s

q∗, = 4.85 for τE2) so that they agree with D
(=0.001 05) at T = 0.7. The solid line indicates the slope −1. If one assumes τq∗ (T ) ∼ η(T ), the
results presented here are strikingly similar to those obtained near Tg for nonentangled polymer
melts (cf figure 9 of [187]).

aggregates (‘subensembles’) of particles possessing an enhanced or a reduced mobility relative
to the average. One should not envisage these aggregates as static objects; they fluctuate
throughout the system with a finite lifetime. Particles that are ‘fast’ at some time will eventually
become ‘slow’ and vice versa. This must be so because the liquid is ergodic above Tg:
if a particle that was initially in a ‘fast region’ always stayed there, the time average over
its trajectory would not agree with the ensemble average over all particles, thus violating
ergodicity.

Viewed from the perspective of dynamic heterogeneity the breakdown of the Stokes–
Einstein relation is interpreted in terms of the different manner in which the mean square
displacement (and so D) and the stress correlation function (and so η) sample the relaxation time
distribution associated with spatially heterogeneous dynamics. The mean square displacement
should be dominated by the more mobile particles, while the slow regions should mainly
determine the relaxation of the stress correlations. Since the width of the relaxation time
distribution is expected to increase on cooling, so does the disparity between fast and slow
regions. This may lead to different T dependences of D and T/η.21

The similarity between plots of the violation of the Stokes–Einstein relation and figure 20
suggests looking for spatially heterogeneous dynamics in our polymer model. The method
used to broach this problem computationally has been inspired by experiments. In the research
on dynamic heterogeneity, experimental techniques have been developed which allow one to
select subensembles of fast or slow particles and to monitor their time evolution [190, 191, 193].
We employ a similar filtering technique here, focusing on spatial correlations of highly mobile
monomers [66, 194]. The analysis closely follows the work of [195–197].

21 Whether a broad relaxation time distribution must necessarily lead to a decoupling of the temperature dependences
of D and T/η is still a matter of debate (see e.g. [191]). As an aside, MCT also predicts a significant broadening of
the relaxation time distribution for T → T +

c [177] without entailing a violation of the Stokes–Einstein relation.
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process. They are taken from figure 9. (a) Mean square displacement (MSD) of all monomers
g0(t) versus t . The behaviour in the ballistic (∼t2) and the polymer-specific regimes (∼t0.63; cf
equation (52)) are shown by solid lines. The horizontal dashed lines depict 6r2

sc (the Lindemann
localization length rsc � 0.095), the radius of gyration R2

g (=2.09), and the end-to-end distance

R2
e (=12.3). (b) Non-Gaussian parameter of the monomers α2(t) (equation (73)) and g4(t)/g0(t)

versus t . g4(t) is the MSD of the end monomers. (c) Number-averaged string length 〈s(t)〉 and
weight-averaged cluster size 〈n(t)〉w versus t . 〈n(t)〉w is normalized by its initial value 〈n(0)〉w
(data reproduced with permission from [194]). The arrows indicate the peak times of 〈n(t)〉w
(tmax

clu = 65.85) and 〈s(t)〉 (tmax
str = 236.26). This figure is adapted from [66].

Selecting mobile monomers: motivation. Studies of spatially heterogeneous dynamics in a
supercooled binary LJ mixture [195–197] identified the ‘mobile subensemble’ as the set of
all particles that move further than distance r∗ in time t∗. More formally, the fraction φm of
mobile particles is defined by

φm =
∫ ∞

r∗
dr 4πr2Gs(r, t∗), (71)

where Gs(r, t) is the self-part of the van Hove correlation function (equation (33)).
To choose the parameters r∗ and t∗ the following criterion was employed: t∗ was taken as

the time where the non-Gaussian parameter α2(t) is maximum, and r∗ as the distance beyond
which the tail of Gs(r, t∗) is larger than that of the Gaussian approximation [119]

GG
s (r, t∗) =

[
3

2πg0(t∗)

]3/2

exp

[
− 3r2

2g0(t∗)

]
; (72)

g0(t) = 〈[ri (t)−ri (0)]2〉 is the mean square displacement (MSD) of a particle. Why are these
choices for r∗ and t∗ expedient?
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The non-Gaussian parameter α2(t) compares the mean quartic displacement of a monomer
to the square of g0(t). It is defined by [119]

α2(t) = 3
〈
[ri(t) − ri (0)]4

〉
5 g0(t)2

− 1. (73)

This quantity has a lower bound α2(t) � −2/5 because 〈[ri (t) − ri(0)]4〉 � g0(t)2, and
vanishes if the displacements are Gaussian distributed. A negative value of α2(t) implies that
a monomer moves on average less far than expected e.g. from diffusive Brownian motion. A
positive value, on the other hand, indicates that the monomer moves further than a Brownian
particle in the same time. A large value of α2(t) is thus a good indicator of enhanced mobility
relative to ordinary diffusion.

Figure 21 depicts α2(t) and g0(t) for the Bennemann model at T = 0.46 [66]. At short
times, the monomers move ‘ballistically’: g0(t) ∝ t2 (equation (43)), Gs(r, t) is Gaussian [119]
and so α2(t) = 0. The regime of ballistic motion is succeeded by a ‘plateau regime’. There
g0(t) increases only slowly with time; the MSD is of the order of 10% of the monomer
diameter. This reflects the temporary caging of a monomer by its neighbours. The plateau
regime may thus be identified with the MCT β process (see section 3.3.2). In this regime,
α2(t) continuously increases toward a maximum. The maximum occurs at time t∗ which is
located in a time interval where the monomers, on average, begin to leave their cages (late
β/early α process). For longer times, α2(t) decreases again and g0(t) ∼ t0.63 (equation (52)).
This subdiffusive behaviour can be attributed to chain connectivity (see the discussion in the
paragraph starting at the heading ‘Interpretation via the Rouse model’ in section 3.3.4). Chain
connectivity dominates the monomer dynamics until the MSD becomes comparable to the
chain size, g0 ∼ R2

e . Then, final diffusion sets in: g0(t) ∝ t (equation (50)), Gs(r, t) is again
Gaussian [119] and so α2(t) = 0.

Figure 21 demonstrates that α2(t) is positive—this feature may be predicted
theoretically [143] and is often observed in simulations [47, 155, 170, 173, 174, 198] and
experiments [199–201] of glass-forming liquids. The monomers in the cold melt close to Tc

thus move substantially further than expected from purely diffusive dynamics, particularly at
the peak time t∗. This suggests choosing t∗ as the time to select mobile monomers.

The enhanced monomer mobility near t∗ cannot be attributed to chain ends. In the time
interval where α2(t) is large, the mean square displacement g4(t) of the end monomers closely
agrees with g0(t) (figure 21(b)). Only for t > t∗, where α2(t) is small again and g0(t) is
dominated by chain connectivity, do we find g4(t) > g0(t). In this time regime, the inequality
‘g4 > g0’ is predicted by the Rouse model [2] and expected to persist up to the diffusive regime
(see [66, 194] for a fuller discussion).

The criterion for selecting t∗ rests upon a comparison with Gaussian behaviour. The same
procedure should be employed to define r∗, whence the idea of comparing Gs(r, t∗) to the
Gaussian approximation GG

s (r, t∗) (figure 22) and defining r∗ as the crossing point of Gs(r, t∗)
and GG

s (r, t∗) for large r .

Selecting mobile monomers: final definition. If these choices for t∗ and r∗ are inserted in
equation (71), the fraction of mobile monomers is found to be 6.2% � φm � 6.8%, depending
on temperature [194]. Apparently, φm varies only weakly with T . So, it appears appropriate
to fix an intermediate value φm = 6.5% for all temperatures.

However, once we decide to fix φm, we can not only do this for all T , but also for all times.
That is, we ‘select a dynamically distinguishable subensemble’ [190] of mobile particles by
ranking the scalar displacements µi(t) = |ri (t) − ri (0)| of all monomers i at time t and
choosing the 6.5% with the largest µi .
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Compared to GG

s (r, t∗), the real dynamics of the cold melt favours displacements that are either
smaller than rl or larger than r∗ . While r∗ serves as a threshold for choosing mobile monomers
(having r � r∗), the enhanced probability, relative to GG

s (r, t∗), of finding r < rl illustrates the
difficulty a monomer has in exceeding the distance rl (see the discussion under the heading ‘Theory’
in section 3.3.5). The latter feature was also nicely demonstrated for a binary LJ mixture by means
of an analysis of mean first passage times [202].

String-like motion and clusters of mobile particles. Figure 22 reveals that, even at t∗, the
majority of the monomers has moved less than 10% of their diameter—they are effectively
jammed. In a melt, whose density is ∼1 (no free space) and in which most monomers move
very little, large displacements, comparable to the monomer size, can only occur if these mobile
particles are close in space and assist their neighbours when they attempt to move (‘dynamic
facilitation’ [203–205]). We thus expect to find clustering and spatially correlated motion
of mobile monomers in the late β/early α regime. This expectation is borne out. Here we
provide a brief survey of these dynamic features, focusing on ‘string-like’ displacements and
clusters of mobile particles. Further details may be found in [62, 66, 194] (see also [192] for
a comparative review of dynamic heterogeneities in model glass-forming liquids and polymer
melts).

‘Clusters’ are defined as aggregates of mobile monomers that reside in each other’s first-
neighbour shells—the first-neighbour shell comprises all monomers within the distance of
the first minimum of the pair distribution function (r = 1.5; figure 10) [194]. Work on
glass-forming binary LJ mixtures [196, 197] further reveals that the clusters are composed of
smaller objects called ‘strings’. The strings are quasi-one-dimensional paths formed by mobile
particles that replace one another as they move. To decide whether monomer i forms a string
with monomer j we employ the following criterion [66]:

i = arg min
{i| |r j (t)−ri (0)|<δ}

[|r j (t) − ri(0)|]. (74)

That is, i forms a string with j if the position of j at time t (r j (t)) is within a radius δ of the
initial position of i (ri (0)) and furthermore if |r j(t) − ri (0)| is the shortest of the distances of
all monomers i which also satisfy the δ criterion. In practical applications, we mostly choose
δ = 0.55; all results to be presented employ this choice (see [66] for a fuller discussion).

It may be evident that neither the strings nor the clusters are monodisperse. At any time
and temperature one should expect a distribution of string and cluster sizes. Let Pstr(s(t))
denote the probability of finding a string of s monomers (‘string length’) at time t . Similarly,
Pclu(n(t)) denotes the probability of finding a cluster comprising n monomers at time t . From
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these probability distributions different averages may be calculated. For the strings, it was
mainly the number-averaged string length 〈s(t)〉 that was studied [66], for the clusters, the
weight-averaged cluster size 〈n(t)〉w [194]. These averages are defined by

〈
s(t)

〉 =
∞∑

s=1

s(t)Pstr(s(t)) and
〈
n(t)

〉
w =

∑∞
n=1 n(t)2 Pclu(n(t))∑∞
n=1 n(t)Pclu(n(t))

. (75)

These quantities serve to characterize the transient nature of the strings or clusters at
temperature T .

Figure 21(c) depicts 〈s(t)〉 and 〈n(t)〉w at T = 0.46. Qualitatively, the two quantities
behave in the same way. They ‘grow’ and ‘shrink’ as t increases, exhibiting a maximum for
times close to t∗. This demonstrates that temporary clustering and string-like processes of
replacement of mobile monomers develop in the β regime and are most prominent when the
monomers begin, on average, to leave their cages.

The possibility of string-like motion was suggested at the end of section 3.3.2; its extent,
however, could not be quantified there. Here we see that the average string length is small.
At tmax

str when the strings reach their maximum size (figure 21), we find 〈s(tmax
str )〉 ≈ 1.9; the

corresponding weight average is 〈s(tmax
str )〉w ≈ 3 [66]. Typically, one monomer thus replaces

one of its mobile neighbours.
A major contribution to this correlated motion results from chain connectivity.

Figure 23(a) illustrates this point. The figure shows the temperature dependence of the ratio
〈sseg(tmax

str )〉/〈s(tmax
str )〉, where 〈sseg(tmax

str )〉 is the number-averaged string length of contiguous
segments of mobile monomers in a chain at time tmax

str . Although this ratio decreases on cooling,
suggesting that replacements by nonbonded neighbours become more frequent, we find that
near Tc still about 70% of all strings consist of contiguous segments of mobile monomers along
the backbone of a chain. Clearly, a monomer tends to replace one of its bonded neighbours.
But this does not imply that mobility is localized on a few chains. If this was the case, 〈sseg〉
should be of the order of N ; yet, it is much smaller. We find 〈sseg(tmax

str )〉 ≈ 1.3. This excludes
a relaxation scenario in which mobile monomers are connected to each other and slide along
the chain backbone.

The aforementioned difference between the number average 〈s(tmax
str )〉 and the weight

average 〈s(tmax
str )〉w points to a polydispersity of the strings; we expect to find a (broad)

distribution of string lengths. Figure 23(a) depicts the probability distribution Pstr(s) of finding
strings of length s at time tmax

str (T ) for different temperatures. While most strings are of modest
size, irrespective of T , large strings become more frequent as T approaches Tc from above.
The large s behaviour of Pstr(s) is well approximated by an exponential

Pstr(s) ∼ 1

〈s〉 exp

(
− s

〈s〉
)

. (76)

This exponential form suggests an analogy, first proposed in [196], between strings and
equilibrium polymers (for a discussion of equilibrium polymers see e.g. [206, 207]).
Equilibrium polymers are systems in which the bonds between monomers are not stable. At
any instant, they may cleave and reform reversibly, allowing the polymers to self-assemble into
chains of different length. In chemical equilibrium, a melt of these self-assembling polymers
has an exponential distribution of chain lengths (provided that the chains are large) [206, 207].
Coming back to our case, the mobile monomers also self-assemble into (small) chains and
the dynamically created bonds can break and recombine at any instant. This similarity to
equilibrium polymers may rationalize our finding that Pstr(s) is close to an exponential [66].

In contrast to Pstr(s), the probability Pclu(n) of finding a cluster of n mobile monomers is
not exponential. Figure 23 shows Pclu(n) at time tmax

clu when 〈n(t)〉w is maximum (cf figure 21).
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Figure 23. Probability distributions of the string length Pstr(s) (a) and of the cluster size Pclu(n)

for different T . Pstr(s) and Pclu(n) are calculated at the times tmax
str and tmax

clu where 〈s〉 and 〈n〉w
respectively are maximum (cf figure 21). In panel (b), the solid (grey) line shows a power law
fit Pclu(n) ∼ n−τ with τ = 1.62. The inset of panel (a) shows the ratio 〈sseg(tmax

str )〉/〈s(tmax
str )〉

versus T − Tc. (〈sseg〉 is the mean string length of contiguous segments of mobile monomers in
a chain.) The inset of panel (b) compares the T dependences of 〈s(tmax

str )〉 and 〈n(tmax
clu )〉w. The

data for Pclu(n) and 〈n〉w are taken from [194] (reproduced with permission). Part (a) is adapted
from [66].

On cooling toward Tc large clusters appear more frequently, and the cluster size distribution
is apparently well described by a power law, possibly supplemented by an exponential cut-off
[194]

Pclu(n) ∼ 1

nτ
exp

(
− n

n0(T )

)
(with τ ≈ 1.62). (77)

The exponential cut-off may be due to finite size effects; the largest clusters comprise n ≈ 65
monomers, i.e., roughly 6.5% of the total number of monomers in the simulation box (see [194]
for further discussion of this issue).

Summary and discussion. The analysis presented above deploys a filtering technique to
select at any time and temperature the most mobile monomers and explores their spatial
correlations. In the temperature regime above Tc, where the two-step relaxation clearly emerges
(0.46 � T � 0.7; cf section 3.3), we find the following results:



Topical Review R903

(i) Mobile monomers form clusters and tend to follow each other in quasi-one-dimensional
paths (‘strings’).

(ii) Different monomers can be mobile at different times [66]; there is thus no permanent
‘phase separation’ between regions of high and low mobility.

(iii) Thus, spatial correlations between mobile monomers are a dynamic phenomenon. They
develop in the β regime, are most pronounced for times when the monomers, on average,
leave their nearest neighbour cages and disappear again on approaching the diffusive
regime. In the late β/early α regime the clustering of mobile monomers and string-like
motion is not dominated by an enhanced mobility of the chain ends [66, 194].

(iv) The average cluster and string sizes are small, not exceeding a few monomers. On the
other hand, these dynamically formed aggregates are fairly polydisperse; large clusters
or strings appear, albeit with low probability22. Because the largest clusters observed are
comparable in size to the total number of mobile monomers, finite size effects cannot
be excluded [194]. Whether the truncation of the largest clusters by the system size
really perturbs the structural relaxation of the glass-forming melt is not clear. Work on
binary LJ mixtures suggests that a system of about 65 particles already exhibits bulk-like
diffusion [208]. The truncation in such a small system will be much more pronounced
(for further discussion of this issue see [209]). Furthermore, a study of a one-component
glass-forming liquid employing a simulation box which is about three times larger than
our system confirms the results found here [210].

(v) Mobile monomers tend to replace their bonded mobile neighbours. Chain connectivity
in our model thus provides a pathway, not present in simple glass-forming liquids, for
string-like motion. However, this polymer-specific spatial correlation is of short range. It
does not lead to a ‘mobilization’ of whole chains, i.e., to a sliding of the monomers along
the chain backbone, at least for T � Tc.

Critique of the analysis. There is much to commend an analysis of spatially heterogeneous
dynamics in focusing on highly mobile particles: it is conceptually simple; it is versatile—
it may be implemented for any (simulated) structural glass former; and it is instructive. In
addition to our polymer model, this analysis and variants thereof have been applied to binary
LJ mixtures [195–197, 209], a glass-forming one-component liquid [210] and a model silica
melt [211, 212]. Nevertheless the analysis appears less than ideal in at least two respects. We
discuss them in turn.

First, it focuses on the most mobile particles. These particles only represent a small
fraction, typically about 6%, of the total number of particles present. What are the features
of the remaining ‘slow’ particles? This question was addressed through different approaches
for several model glass-forming liquids above Tc [197, 213–215]. We do not attempt to be
exhaustive here in presenting the results of these studies. We rather discuss one example.

For a binary LJ mixture, Donati et al explored spatial correlations between the 5% least
mobile particles—those with the smallest displacement in time t—in a manner analogous to
the analysis described above [192, 197]. The least mobile particles also cluster. The structure

22 A detailed analysis of the mechanism of string-like motion was performed for a one-component glass-forming
liquid in which the particles interact via the Dzugutov potential [210]. The main finding of this work is that it would
be oversimplified to visualize every string-like motion as a coherent replacement process in which all particles move
simultaneously. Such a coherent replacement typically occurs only in small strings or in subunits (‘microstrings’) of
large strings. This cooperative motion is thus limited to small length scales. For these large, noncoherent strings,
individual mobile particles or microstrings trigger the motion of other parts of the string. However, for most of these
noncoherent strings, this ‘dynamic facilitation’ does not occur in a sequential, but rather in a random fashion: an
ordered sequence of replacements is disrupted by one or more particles.
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of these clusters is more compact compared to that of the mobile ones, their size is essentially
T independent and the probability of finding an immobile particle close to a mobile one is
depressed with respect to static pair distribution function (‘correlation hole’). No obvious
correlation between these slow particles and the local density was found. There appears,
however, to be a correlation between the mobility of the particles and their potential energy,
large potential energy being associated with higher mobility.

The connection between the structural relaxation and the potential energy—more precisely
the potential energy landscape (PEL)—was investigated also for a binary LJ mixture by
Büchner and Heuer [213]. At low T the system may temporarily reside in the basin of attraction
of a few, adjacent minima of the PEL (cf appendix B). While visiting these minima over and
over again, relaxation is slow; it becomes fast if the system is not restricted to such a valley
of adjacent minima. The macroscopically observed dynamics of the system results from the
time average along this trajectory through configuration space.

There is a second issue of our analysis, which may appear problematic. The analysis
hinges on the identification of a suitable fraction of mobile particles. There is some latitude
in the definitions of what a ‘suitable fraction’ (typically 5%–8% [194]), a ‘mobile particle’
(see e.g. [197]) and a ‘string’ [66] really are. This freedom may be undesirable. It would thus
be advantageous to avoid the filtering of kinetic subensemble and to look for an alternative,
ensemble-averaged diagnostic of dynamic heterogeneities. Experiments suggest that higher
order correlation functions should be employed for this purpose [190, 193, 217]. An example
is provided by the following ‘displacement–displacement’ correlation function:

gu(r, t) = 1

〈µi (t)〉2ρm M

〈 M∑
i=1

M∑
i 	= j

µi (t) µ j (t) δ
(
r − [r j(0) − ri(0)]

)〉
, (78)

where µi(t) = |ri(t)−ri(0)| is the scalar displacement of monomer i in time t and ρm = M/V
(M = nN) the monomer density (equation (7)). This function depends on four ‘points’ of
information—the initial positions of monomers i and j , and their locations at time t ; gu(r, t)
measures spatial correlations between the displacements of two particles which are initially a
distance r apart. Such displacement correlations were studied in binary LJ mixtures [216, 218],
in hard sphere and hard disk systems [219] and in our polymer melt [62] (for related work see
also [220]). At early and late times the displacements of monomers i and j should decouple.
One then expects gu(r, t) to agree with the pair distribution function g(r). However, it would be
consistent with the previous results if a pronounced coupling of displacements occurred when
the monomers break out of their cages. This is indeed observed [62]. As Tc is approached on
cooling, a growing range of correlation can be detected in the monomer motion. The extent of
these correlations depends strongly on time; it is most pronounced in the late β/early α regime
where gu(r, t) is distinctly larger than g(r) for distances up to several monomer diameters (cf
figure 24).

Functions similar to gu(r, t), replacing the particle displacements by particle overlap [215]
or density fluctuations [205], have recently been discussed.

4. Modelling the glass transition of polymer films

4.1. Introduction

A long-standing conjecture of the research on glasses is that the vitrification process is caused
by the growth of a correlation length ξg. ξg is supposed to measure—according to Adam and
Gibbs [221]—the average size of a subensemble whose constituent particles can rearrange into
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Figure 24. Displacement–displacement correlation function gu(r, t) and pair distribution function
g(r) versus r at T = 0.47 and t = 277.76. This time corresponds to the late β/early α regime (see
e.g. [66]). The inset shows the excess correlation (r) = [gu(r, t)/g(r)]−1 versus r . Apparently,
(r) does not tend to 0 if r approaches half of the box size (r → 5); it does so, however, for the
larger system (binary LJ mixture) studied in [216]. Thus, finite size effects cannot be excluded in
the present case [194]. This figure is adapted from [62].

a new configuration independently of the other particles surrounding them. Adam and Gibbs
referred to this subensemble as a ‘cooperatively rearranging region (CRR)’.

In modern terms, this conjecture may be supported as follows [19]: at low T , most particles
are ‘caged’ and mobility is sparse. A substantial rearrangement of particles—prerequisite to
the α relaxation—can only occur if a particle that moves at some time due to a thermal
fluctuation assists its neighbours to become mobile; the neighbours assist their neighbours in
their motion; and so on until particles are encountered whose motion cannot be (fully) excited.
This ‘dynamic facilitation’ [203–205] naturally leads to the concept of a CRR. A CRR may
be viewed as a subensemble of particles over which mobility spreads on the timescale of the
α process. As the α timescale increases on cooling toward Tg, the average size ξg of the CRR
should grow along with that, attaining a few nanometres at Tg (cf e.g. figure 2.15g of [19]).

Study of glass formers in spatial confinement: expectations and complications. An appealing
approach to evidencing the existence of the CRRs and estimating their size appears to lie in
the study of the glass transition in spatial confinement. If there really is a correlation length
which grows on approaching Tg from above, it should be truncated by the finite dimension of
the confinement; and this should entail a faster dynamics compared to that of the bulk [19].

This perspective—in addition to the increasing technological interest in nanoscale
materials—can account for much of the recent activity in the research on geometrically
confined glass-forming systems [222, 223]. Numerous experiments [103, 104, 126, 224–252],
computer simulations [70–73, 94, 253–272] and theoretical approaches [273–281]
have been deployed to reveal the phenomenology and the underlying mechanism
of the glass transition in spatially confined liquids. The systems investigated
range from simple liquids [94, 230, 266–268, 270, 272], over molecular and
hydrogen-bonded liquids [126, 224–229, 269, 271] to silica [265] and polymers
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[70–73, 103, 104, 231–264, 273, 274, 277, 279–281]. The geometries considered involve
three-dimensional cavities [228], pores [126, 224–229, 244, 245, 266, 269, 271, 281],
nanosized fillers embedded in glass-forming liquids [254, 255, 268] and thin films
[70–73, 94, 103, 104, 230–243, 246–253, 256–265, 267, 270, 272–281]. These results have
been the subject of recent topical reviews, either with a particular focus on polymer films
[104, 282] or providing a comprehensive overview of the field [283].

The broad-brush picture emerging from these studies is that the state of affairs is more
complicated than expected (or hoped). Glass formers confined to nanoscopic dimensions
display features which differ from the corresponding bulk behaviour not only due to spatial
restrictions, but also—and very often mostly—due to interfacial effects. These interfacial
effects may have different contributions. We mention three of them (for a fuller discussion see
e.g. [19, 283]):

• Interaction effects. It is natural to expect strong attractive particle–substrate interactions
to temporarily trap particles close to the confining walls. These particles may partly slow
down their neighbours which in turn obstruct the motion of their neighbours and so on.
This enables the wall-induced retardation to propagate into the core of the system. As
a result Tg should increase, particularly in strong confinement (narrow pores, ultrathin
films). Conversely, a vanishing attraction—that is, only repulsive interactions are at play,
as is e.g. the case at the polymer–air interface—should lead to a decrease of Tg. The
importance of the particle–substrate interaction was recognized early; this has led to a
number of studies which aimed at directly exploring this effect, e.g. for thin polymer films
(cf the reviews [104, 282, 283]).

• Impact on structure. The presence of an interface creates environments for nearby
particles, which differ from the local structure present in the bulk. For instance, we
may expect monomers located at a polymer–air interface to be more mobile because
they feel less steric constraints than a monomer in the bulk. This suggests that not
only interfacial interactions, but also structural aspects—modifications of the monomer
packing, changes of the local chain conformations [241] etc—may play an important role
for the understanding of the (glassy) dynamics in confinement.

• Density variations. The density of spatially confined glass formers need not necessarily
agree with that of the bulk. For instance, if the density steadily decreased with increasing
confinement (and this was the sole effect of the confinement [224, 225]), one would expect
to find a depression of Tg. Confinement-induced changes of the density do not seem to be
an issue for thin polymer films [103, 283]; the glass transition in pores, however, provides
an example where such concerns may arise (see e.g. the careful study of molecular liquids
confined in highly regular mesopores [224, 225]).

Our contribution: computer simulations of polymer films. We attempt to contribute to this
research by means of simulations of model polymer films. Unlike our earlier Monte Carlo
studies of the bond fluctuation lattice model [28], reviewed in [33, 284], our more recent
work deployed MD simulations to explore the features of a continuum model, the Bennemann
model, spatially confined to a thin film geometry by smooth [70, 71, 73] or rough walls [72]
(cf sections 2.2 and 2.3).

This shift in the choice of the model—from the lattice to the spatial continuum—is
motivated by two aims: first, to avoid the discretization of space, the fingerprint of which
leaks out, especially for local interfacial properties and small film thicknesses; second, to
enable simulations at constant (normal) pressure [68, 69] (cf section 2.4) of a model that is
well characterized in the bulk (cf section 3).
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In the following, we shall be mainly concerned with equilibrium properties of polymer
films. For our simulations this limits the temperature regime to T > Tc(h), Tc(h) being the
critical temperature of MCT for a film of thickness h. The most extensive body of the data to
be presented will deal with the Bennemann model confined between two completely smooth,
purely repulsive walls (cf sections 2.2 and 2.3). We will explore film thicknesses (5 � h � 20)
that are larger than the bulk radius of gyration (Rg � 1.45). Results for other wall types—
crystalline and amorphous (cf section 2.3)—will be briefly discussed and compared with those
obtained for the smooth walls at the end of this section.

4.2. Polymer films between smooth walls: static properties

The discussion of section 3 suggests that a thorough knowledge of structural features provides
helpful information for analysing the dynamics of polymer melts. Close to a solid interface
the structure of the melt can markedly deviate from the behaviour found in the bulk [285].
This is pointed out from analytical approaches (see e.g. [286–293]) and computer simulations
of model systems (see e.g. [286, 287, 291–296]; for a survey of older work see e.g. [297]).
In this section, we describe the influence of purely repulsive walls (equation (4)) on structural
features of the Bennemann model. The presence of a wall breaks the translational symmetry
of the system. Two directions may be distinguished: the z direction perpendicular to the wall
and the directions parallel to it. We divide our discussion accordingly.

4.2.1. Structure perpendicular to the wall. In contrast to that for the bulk, the monomer
density in a film is not constant; it depends on the position r in space. The occurrence of the
spatial dependence results from the interplay of the monomer–wall and monomer–monomer
interactions (see e.g. [286, 287]).

We may obtain a qualitative understanding of the effect if we appeal to a simpler system:
a liquid of identical, pairwise interacting particles in contact with a wall (see e.g. [298] for a
detailed analysis of hard sphere systems). For such a system the (exact) first equation of the
Yvon–Born–Green (YBG) hierarchy relates the particle density ρ(r) at position r to the wall
potential Uw(r) and the pair interaction U(|r − r′|) via [100, 119]

− kBT ∇r ln ρ(r) = ∇rUw(r) +
∫

d3r′ ρ(r′)g(r, r′) ∇rU(|r − r′|). (79)

This equation expresses the force balance at point r between the thermodynamic force
−kBT ∇r ln ρ(r), the external force due to the wall and the force resulting from the interaction
of the tagged particle at r with all other particles in the system. The latter contribution depends
on the spatial structure of the inhomogeneous fluid, which is embodied by the pair distribution
function g(r, r′). The term ρ(r′)g(r, r′) is proportional to the probability of finding another
particle at r′ provided that the tagged particle is at position r.

In a homogeneous fluid, Uw(r) = 0, and the density is constant. Then, the second term on
the rhs of equation (79) vanishes because the interaction forces that the particle at r experiences
are radially symmetric and thus compensate one another. However, a full compensation at any
r is not possible in a spatially inhomogeneous system; for instance, in a film. Near the wall,
there are fewer particles to the left than to the right, implying an imbalance of the interaction
forces. An equilibrium of all forces can only be achieved by a spatial variation of the density.

Density profile averaged over all monomers. This mechanism also operates in our polymer
model. Figure 25 illustrates the effect for the thickest film (h = 20) at various temperatures,
ranging from the high T , normal liquid state to the supercooled state of the melt. The figure
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Figure 25. Temperature dependence of the monomer density profile ρm(z) for h = 20 (≈14Rg);
z is the distance of a monomer from the (left) wall. Since the profile is symmetric with respect
to the middle of the film, only one half is shown. zw denotes the effective position of the wall at
T = 0.45 (equation (80)). The density profile is normalized by the bulk density ρm(T ). The T
dependence of ρm(T ) is depicted in the inset for 0.46 � T � 1 (Tc � 0.45; cf table 1); the dashed
line in the inset indicates the result ρm(T ) = 1.1714 exp(−0.2603 T ) from [65]. All simulation
results refer to the pressure p = 1.

depicts the monomer density profile ρm(z), i.e., the variation of the monomer density with
distance z from the wall. ρm(z) vanishes for z < 1. The closest distance to which a monomer
may approach the wall slightly increases on cooling. We may understand this observation from
equation (79). A rough estimate of the distance of closest approach—that is, of the effective
wall position zw—can be obtained if we neglect the interaction term and suppose that ρm(z)
results only from Uw(z) = 1/z9 (equation (4)). This gives

ρm(z) = ρm exp

[
−

(
zw

z

)9]
with zw = T −1/9. (80)

While the result for zw closely agrees with more refined estimates of the wall position,
incorporating the interactions between the monomers [68], the monotonically increasing
monomer profile predicted by equation (80) is not in accord with the simulation data (see
also figure 26). The full force balance leads to density oscillations: there is a high monomer
concentration at the wall which, due to the mutual repulsion of the monomers, reduces the
density in the adjacent layer; that in turn allows for an enhanced density in the following layer
and so on, until the bulk density ρm is reached in the centre of the film. The bulk density
increases on cooling (inset of figure 25), a consequence of the simulation being carried out
at constant pressure. The increase of ρm reinforces the packing constraints in the film. This
gives rise to an amplification of the oscillations of ρm(z) and, along with that, the decay of
ρm(z) becomes more long ranged.

The qualitative features of ρm(z) described are typical of liquids in contact with an
impenetrable wall [101, 298]; they are also found in theoretical and computational studies
of polymer films [286, 287, 289–291, 293, 296]. A convergence toward the bulk density in
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Figure 26. Main figure: various density profiles ρx(z) for h = 20 at T = 0.5. ρm(z) is the
density profile averaged over all monomers of a chain, ρi(z) the profile of the middle monomer
and ρe(z) the profile of the end monomers. All profiles are divided by the respective bulk density
ρx (ρm(T = 0.5) = 1.0291, ρi = ρm/N , ρe = 2ρm/N ; N = 10). The dotted line indicates
equation (80); zw denotes the effective position of the wall at T = 0.5 (equation (80)). Inset:
dependence of ρm(z) on film thickness h for T = 0.5.

the centre of the film can, however, only be observed if the film thickness is large enough
[299–302]. Figure 26 illustrates this effect for our model. When h � 20 and ρm ≈ 1, the
density oscillations induced by the left and right walls propagate so deeply into the film that they
interfere in the middle. No bulk-like region then exists. Despite this interference, the density
oscillations close to the wall are only weakly—if at all—affected by the finite film thickness.

Density profiles of end and middle monomers. The density profile ρm(z) aggregates
contributions from all monomers, irrespective of their specific location along the chain. This
averaging procedure levels site-specific differences. Apart from some dependence on chain
length that appears to saturate quickly [291, 303], ρm(z) essentially resembles the profile of
simple liquids. A deeper insight into the conformational characteristics may be obtained by
recording density profiles of particular monomers, such as the profile of the end monomers
ρe(z) or that of the middle monomer ρi(z); or that of the centre of mass23.

Figure 26 depicts ρi(z) and ρe(z) for h = 20 and compares the profiles to ρm(z). The
hallmarks of ρi(z) and ρe(z) are that the probability of finding the middle monomer at the wall
is suppressed with respect to ρm(z), whereas the concentration of end monomers is enhanced.
The large value of ρe(z) at the wall entails a depression of chain ends compared to ρm(z) in
the next layer. Conversely, the small value of ρi(z) at the wall leads to an enhancement of
middle monomers in this layer. The differences of the profiles still persist in the following

23 Here, we do not discuss in detail the profile of the chain’s centre of mass (COM). Qualitatively, one expects—and
one finds; see e.g. [287] or [297] and references therein—that the COM density vanishes on approaching a repulsive
wall. This is because, if a COM is located near the wall, many other monomers are also forced to lie close to it. This
strongly restricts the number of configurations that a chain may adopt. The attendant loss of configurational entropy
gives rise to a pronounced effective COM–wall repulsion. This idea has recently been substantiated by an analytical
determination of the COM profile for an ideal chain [288].
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layer, but then become negligible; the oscillations of ρi(z) and ρe(z) converge toward those
of ρm(z). An enhancement of chain ends at the wall and a range of the oscillations of ρe(z)
identical to that of ρm(z) are commonly found in simulation studies of model polymer films
(see e.g. [287, 300, 303]).

4.2.2. Structure parallel to the wall. There are two ways of characterizing structural features
parallel to the wall: either by a layerwise resolution of the structure or by determining averages
over the film. We shall give examples for both approaches in the following.

Layer-resolved properties: pair distribution functions. Equation (79) suggests that a further
key quantity characterizing the structure of the confined polymer melt is the pair distribution
function g(r1, r2). This function measures the probability of finding a monomer at r2 provided
that another monomer is at r1. The planar geometry of the film naturally leads us to distinguish
between the z direction perpendicular to the wall and the parallel direction s = (x, y). Parallel
to the wall the system is bulk-like. So, only the distance s = |s2 − s1| between the monomers
is important. Appealing back to the notation of section 3.2 the pair distribution function may
then be written as

g(s, z1, z2) = 1

Aρm(z1)ρm(z2)

〈 n∑
i, j=1

N∑
a 	=b

δ
(
s − [sa

i − sb
j ]
)
δ
(
z1 − za

i

)
δ
(
z2 − zb

j

)〉
, (81)

where A denotes the area of the wall and ra
i = (sa

i , za
i ) is the position of monomer a in chain

i (a = 1, . . . , N ; i = 1, . . . , n). The prefactor in equation (81) guarantees that g(s, z1, z2)

approaches 1 as s → ∞.24

Figure 27(a) presents the influence of the wall, for h = 10 and T = 0.46, on the
pair distribution function for a layer at distance z. As z1 = z2 = z, we have s = r ,
and so g(s, z1, z2) = g(r, z). The figure reveals that, despite the strong structuration in
the perpendicular direction, the lateral structure of the melt is—at a qualitative level—only
weakly perturbed, even for the layer next to the wall. The pair distribution function has the
hallmarks of an amorphous structure: it displays a sequence of peaks whose amplitude rapidly
decreases toward 1. This reflects the short range order of the monomers that spatially organize
in nearest neighbour shells, as it is typical of the liquid state.

We thus find qualitative agreement between the layer-resolved g(r, z) and the g(r) of the
bulk. The agreement can even be quantitative if the layers lie in the centre of the film (cf the
inset of figure 27(a)). The layer in contact with the wall, however, displays differences at a
quantitative level: the peak at r = rb (bonded nearest neighbours) is sharper, that at r = rmin

(nonbonded nearest neighbours) is weaker than in the bulk; and the amplitudes of the following
oscillations diminish more rapidly. A further bit of information is provided by figure 27(b).
Quite generally, the pair distribution function can be decomposed into intrachain and interchain
parts (see e.g. equation (34) for such a decomposition). Figure 27(b) reveals that the peaks
at r = rmin and r ≈ 2 are largely and those at r > 2 fully determined by the interchain part.
The depression of these peaks compared to those for the bulk is thus indicative of a weaker
intermolecular packing of the monomers near the wall. The intramolecular packing, on the
other hand, is enhanced close to the wall.

Averages over the film: static structure factors. The intermolecular packing—more precisely,
its reinforcement with decreasing T —has been identified as a driving force for the slow, glass-

24 A detailed analysis of the site-resolved pair distribution function and of related quantities has been presented for
hard sphere systems in [298, 386].
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Figure 27. (a) The main figure shows for a film of thickness h = 10 at T = 0.46 the layer-resolved
pair distribution function g(r, z) (equation (81)). z denotes the distance of a monomer from the
wall; r is the distance between two monomers in direction parallel to the wall (for z1 = z2 = z,
r = |r2−r1| = s where r1 = (s1, z1) and r2 = (s2, z2); see the text for details). The perpendicular
distances z = 1.375 and 2.125 are close to the first and second peaks of the monomer density profile
ρm(z) (cf the inset of figure 26); z = 5 corresponds to the centre of the film. The positions of
the bond length rb ≈ 0.97 and of the minimum of the Lennard-Jones potential rmin ≈ 1.12 (cf
section 2.2) are indicated by arrows. Inset: comparison of g(r, z) for the film centre (z = 5) with
the bulk g(r) at T = 0.46. (b) Comparison for z = 1.375 of the total g(r, z) with the intrachain
contribution (‘i = j’ in equation (81)) and the interchain contribution (‘i 	= j’ in equation (81)).
As in panel (a), h = 10 and T = 0.46.

like dynamics of our model in the bulk (cf e.g. section 3.3.5). It is thus important to understand
how the presence of the walls affects key structural quantities, such as the intrachain structure
factor w(q) or the collective structure factor S(q)—both averaged over the film.

We exemplify this influence of the walls for T = 0.46 in figure 28. The figure compares
the bulk results for w(q) and S(q) with the corresponding structure factors obtained in a film
of thickness h = 5. (For the film, w(q) and S(q) are computed for wavevectors parallel to the
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wall, i.e., for {q = (qx, qy, 0) | |q| = q}.) Two general features, which can also be observed
for other h and T , will be highlighted here:

(i) w(q) remains essentially unaltered by the confinement, at least for q � q∗.25 On the other
hand, the confinement has a pronounced effect on S(q). This implies that it is mainly
the intermonomer packing that is affected when moving from the bulk to the thin film
geometry.

(ii) The most prominent effect of the confinement on S(q) is that the amplitude of the
amorphous halo S(q∗) is depressed with respect to that of the bulk.

These observations are important. The inset of figure 28 reminds us of what is relevant
for the glass-like dynamics in the bulk: it is the rise of S(q) in the q range around q∗. This
rise reflects the tightening of the intermolecular packing of the monomers with decreasing T
(remember that w(q) remains unchanged on cooling; cf section 3.2). The influence of the walls
on S(q) thus appears to correspond to the influence that an increase of T has in the bulk. If this
correspondence—‘decrease of h ⇔ increase of T in the bulk’—carries over to the dynamics,
we should expect the films, for a given temperature, to relax faster than the bulk26. We will
pursue this idea in the next section.

4.3. Dynamic properties of polymer films

The task of exploring the dynamics of polymer films can be accomplished in the same way
as the analysis of the structure. We may introduce quantities which measure the dynamics
perpendicular or parallel to the walls. Here, we have chosen to focus on the parallel direction,
mainly for the following reason. Motion in the perpendicular direction is restricted by the finite
film thickness—its asymptotic long time behaviour can be related to the structure of the film
in this direction [71]. By contrast, motion in the parallel direction is not bound, thus allowing
for a comparison of the long time dynamics in the film with the corresponding bulk system.

As for the structural features, we organize our presentation by discussing film-averaged
and layer-resolved quantities. We begin with the former.

4.3.1. Dynamic properties averaged over the film. Among the convenient quantities for
characterizing the dynamics are mean square displacements (MSDs)—for example, the MSD
of the middle monomer of a chain:

g1(t) =
〈[

rN/2(t) − rN/2(0)
]2

〉
. (82)

25 The extent to which confinement influences the intrachain structure factor on larger scales (q � q∗) and the chain
dimension of long polymers has recently attracted a lot of interest (see e.g. [387] (theory), [294, 295] (simulations),
[388] (review)). Theory [387] and simulations [294, 295] suggest that there are residual excluded volume interactions
in confined melts, which affect the conformational features of the chains, while these interactions only have a (very)
weak influence on the radius of gyration measured parallel to the wall—except for ultrathin films (h � Rg), they lead
to deviations from the classical ‘Kratky behaviour’ for w(q) already in the bulk.
26 There is a conspicuous qualitative similarity between the influence of confinement in our system and the effect of
short range attractions in colloidal suspensions. Hard sphere-like colloidal suspensions can undergo a glass transition if
the volume fraction of the particles ϕ exceeds a critical threshold ϕc. Addition of a weak short range attraction between
the particles can shift ϕc to larger values. The counterintuitive finding—attraction impedes instead of favouring glass
formation—is interpreted in the following way [364]: compared to the hard sphere case a weak attraction entails a
more inhomogeneous cage structure; the average distance between the particles decreases, and concomitantly, the
average size of the ‘holes’ increases. These inhomogeneities are reflected by changes of S(q) close to q∗. The
amplitude of the first sharp diffraction peak decreases and the peak becomes broader [120, 366]. From the perspective
of MCT these changes are responsible for the shift of ϕc to larger values. The inhomogeneities induced by the walls
in our system appear to have a similar effect on S(q) and the dynamics.
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Figure 28. Main figure: collective structure factor S(q) and intrachain structure factor w(q) versus
q at T = 0.46 for the bulk and a film of thickness h = 5. For the film only wavevectors with
direction parallel to walls are utilized to calculate w(q) and S(q) (i.e., q = (qx , qy , 0)). Inset: bulk
S(q) for T = 0.46 and T = 1 (cf figure 5).

In figure 29 we compare g1(t) for various film thicknesses with the corresponding MSD of the
bulk. The temperature T = 0.46 is close to the bulk critical temperature of MCT (Tc � 0.45; cf
table 1). The bulk MSD thus increases in two steps (cf section 3.4): after the short time regime
of ballistic motion (g1(t) ∼ t2), there appears first the β relaxation, where g1(t) is close to the
Lindemann localization length rsc, and then the α relaxation in which the monomer escapes
from its nearest neighbour cage and eventually crosses over to diffusive motion, g1 = 6Dt (D
is the diffusion coefficient). Final diffusion is preceded by a subdiffusive regime, originating
from chain connectivity, where g1(t) ∼ t0.63 (cf equation (52)).

This scenario is altered in the films as regards the occurrence of the two-step relaxation.
The thinner the film, the more the two-step relaxation disappears and the faster g1(t) increases.
Apparently, a reduction of h at constant temperature has a comparable effect to an increase of
T in the bulk (cf the inset of figure 29).

Thus, we arrive again at the conclusion drawn before in the discussion of the static structure
factors (cf figure 28). There appears to be the correspondence: ‘decrease of h ⇔ increase of
T in the bulk’. If this is really so, how can we then turn this qualitative correspondence into a
workable analysis method for quantifying the effect?

One possibility is as follows. We presume that a film of thickness h at temperature T
corresponds to a bulk system at a higher temperature T ∗. T ∗ must be higher because the
dynamics of the film is faster than that of the bulk at the same temperature T . We can
determine T ∗ by requiring that the film S(q) at T should agree with the bulk S(q) at T ∗.
The bulk temperature T ∗ helps us to estimate the critical temperature Tc(h) of the film: T ∗
is at distance �T = T ∗ − Tc from the bulk Tc; so we impose Tc(h) = T − �T . This
determination of Tc(h) amounts to the assumption that the features of the film change in the
same way on cooling as those of the bulk; all that the confinement does is delay the building
up of the intermolecular packing—and the attendant slowing down of the dynamics—to lower
temperatures.
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Figure 29. Main figure: mean square displacement g1(t) of the middle monomer of a chain versus
t for the bulk and different film thicknesses h as indicated. The MSDs of the film are measured in
the direction parallel to the wall. The film data are multiplied by 3/2 to account for the different
numbers of spatial dimensions used in the calculation of g1(t) (three for the bulk, two for the films).
For both the film and the bulk the temperature is T = 0.46. The behaviour in the ballistic (∼t2),
the polymer-specific (∼t0.63; cf equation (52)) and the diffusive regimes (∼t) are shown by solid
lines. The dotted horizontal lines depict 6r2

sc (Lindemann localization length rsc � 0.095) and the
end-to-end distance R2

e (=12.3). Inset: bulk g1(t) versus t for T = 0.6 and T = 0.46. The dotted
horizontal lines indicate the bulk radius of gyration R2

g (= 2.09) and the end-to-end distance R2
e

(=12.3).

Figure 30 tests this conjecture for two films of thickness h = 10 and 20. The analysis
presupposes that we can find temperatures for which the structure factor of a film and of the bulk
coincide. Figure 30(a) provides an example: the bulk data for S(q) at T = 0.5 superimpose
on the film results at T = 0.44 (h = 10) and T = 0.46 (h = 20).27 This agreement occurs,
according to the argument of the preceding paragraph, because the films and the bulk are at
the same distance �T from the respective critical temperature. With the bulk values T ∗ = 0.5
and Tc � 0.45 we find �T � 0.05, and so Tc(h = 10) � 0.39 and Tc(h = 20) � 0.41.

These estimates for Tc(h) provide important reference points for the analysis of the
dynamics. For the same �T (�0.05, 0.03) figure 30(b) compares g1(t) of the bulk with g1(t)
of the films so as to test whether the agreement found for the structure also entails agreement
of the dynamics. Certainly, measuring temperature relative to Tc(h) is a viable approach.
The main differences observed in figure 29 when comparing bulk and film dynamics at the
same T are removed and finer details of the time evaluation become apparent. We find good
agreement between the bulk and the films in the β regime, particularly in the time window
around g1(t) ≈ 6r2

sc. In the α regime, however, differences emerge and grow with time. The
MSD of the bulk increases faster than g1(t) for the films. Thus, the time dependence of the
film MSDs is more stretched than that of the bulk. Since the film data closely agree with one

27 For the temperatures studied the influence of confinement on the collective structure of the polymer films appears
to be weak as long as the film thickness is not too small. Differences between S(q) for the bulk and that for a film
occur, for instance, for the smallest film thickness h = 5 at low T (T = 0.35, i.e., T − Tc(h) = 0.05) [71].
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Figure 30. (a) Collective static structure factor S(q) versus q for the bulk and two films of
thickness h = 10 and 20. The calculation of S(q) for the films only employed wavevectors which
are oriented parallel to the walls (cf figure 28). The temperatures for h = 10, h = 20 and the
bulk are different; they are chosen such that the structure factors coincide. The agreement of S(q)

establishes a correspondence of the temperature in the bulk and that of the film. Since we know
the distance from Tc in the bulk (T − Tc � 0.5 − 0.45 = 0.05), this suggests estimating Tc(h) as
Tc(h) � T of the film−0.05. This gives Tc(h = 10) � 0.39 and Tc(h = 20) � 0.41. (b) Log–log
plot of g1(t) versus t for the bulk and the two film thicknesses of (a). The MSDs of the films are
measured in the direction parallel to the wall and multiplied by 3/2 (cf figure 29). The MSDs are
compared for T − Tc � 0.05 and 0.03. In the latter case, T = 0.48 (bulk), T = 0.44 (h = 20)
and T = 0.42 (h = 10). The dotted horizontal lines depict 6r2

sc (Lindemann localization length
rsc � 0.095) and the bulk radius of gyration R2

g (= 2.09). (c) Incoherent intermediate scattering

function φs
q (t) at q = 6.9 and T − Tc = 0.03 for the bulk and h = 10, 20. f sc fit

q indicates the bulk
nonergodicity parameter taken from figure 13. This figure is adapted from [70, 71].

another for all times simulated, the stretching appears to be only weakly affected, if at all, by
film thickness.

From what we have said it would seem that confinement has almost no influence on the β

relaxation. Differences mainly occur in the late α, connectivity dominated regime before final
diffusion sets in. But this conclusion drawn from the MSD does not carry over to the relaxation
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at larger wavevectors (note that g1(t) is related to the small q limit of the density correlator
F s

ab(q, t) of a single chain; cf equation (69)). Figure 30(c) provides a case in point. It depicts
the incoherent intermediate scattering function φs

q(t) (equation (40)) at q = 6.9 for the bulk
and the same film thicknesses, h = 10, 20, as before. Now, differences already emerge in the
late β regime between the bulk and the films, and also between films of different thickness,
although the data are compared at (about) the same �T (�0.03). Clearly, the α relaxation in
the films is more stretched than in the bulk. But the stretching does not evolve monotonically;
the shape of the α relaxation for h = 10 is closer to the bulk behaviour than that observed for
h = 20.

Commentary on the analysis of the results. The previous analysis employed ideas from
mode-coupling theory for the bulk. Such an interpretation is motivated by the observation that
structural and dynamic properties, averaged over the film, closely resemble the corresponding
bulk results. In this sense, the influence of the walls may be considered as ‘weak’, at least if
h is not too small (see footnote 27).

Probably this feature is not specific to our polymer model. Other simulations of glass-
forming systems confined by ‘weakly’ interacting walls also find the dynamic properties of the
confined and bulk liquids to be close to one another [254, 255, 267, 268]. On the other hand,
if the interaction of the liquid with the walls is strong due to surface roughness or preferential
attractions, a qualitatively different relaxation of bulk and confined systems may be expected
and is observed [94, 254, 255, 266, 267]; we return to this point in section 4.4.

The overall picture emerging from these simulations is that confinement alters, to a variable
extent, the relaxation behaviour of the liquid. It would thus be surprising if it was possible, in
our model, to obtain full quantitative agreement between bulk and film dynamics by simply
rescaling the temperature axis. Mode-coupling theory—as it was introduced for the bulk in
section 3.3.5—would however suggest such an agreement for the following reason. On the
T scale relative to Tc(h) the film and the bulk have the same S(q) and c(q)—remember that
ρmc(q) = w(q)−1 − S(q)−1 (equation (18)) and that w(q) is independent of h in the q regime
relevant to MCT (cf figure 28). Two systems with identical structure should display the same
relaxation behaviour. Thus, the deviations presented in figures 29(b) and (c) are unexpected.

Perhaps this failure is a reflection of two (naive) assumptions. Firstly, it is not clear whether
averaging over the monomer indices is still permissible in the films (cf equations (15) and (60)).
The enrichment of chain ends at the wall might lead to pronounced differences between the
site-resolved direct correlation function c1a(q) and the averaged c(q), thus invalidating the
equivalent-site approximation (equation (15)). Secondly, the dependence of the film properties
on the distance from the wall should be accounted for explicitly. More complicated structural
quantities, such as the Fourier transform of g(s, z1, z2) and the density profile ρm(z), could
appear in a mode-coupling approach for polymer films.

4.3.2. Thickness dependence of the glass transition temperature. The determination of Tc(h)

in the preceding section is appealing in two respects: it is conceptually simple, and it works
directly with the simulation data—no fit procedure is involved. Nevertheless, the analysis has
a drawback. It is predicated on having simulation data at finely spaced T intervals at hand so
as to allow for a precise location of Tc(h). In general, this condition was not fulfilled in our
study, not even for the cases h = 10 and 20 studied before.

We thus employed another method for refining the estimates of Tc(h) for h = 10, 20 or
for determining Tc(h) for other thicknesses. We define two relaxation times reflecting the
dynamics on two different length scales—more precisely, the dynamics for q → 0 and for the
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Table 2. Mode-coupling critical temperature Tc(h) and exponents γ1(h) and γq∗ (h) for different
film thicknesses h and for the bulk [70, 71]. For the films, Tc(h) and γ1(h) were obtained by fits
of the relaxation times τ1 and τ s

q∗ to equation (84). τ1 and τ s
q∗ are defined by equation (83). The

bulk results are taken from table 1 and [58] (the value for γ1). The numbers in parentheses give
the error bars (i.e. (x) = error in the last digit, (xx) = error in the last two digits). The values for
λ are derived from γq∗ by using equation (23) and (24).

h 5 7 10 15 20 Bulk

Tc 0.305(6) 0.365(7) 0.390(5) 0.405(8) 0.415(5) 0.450(5)
γ1 2.5(2) 2.4(2) 2.1(1) 2.2(1) 2.1(1) 1.95(10)
γq∗ 3.24(8) 3.15(10) 2.68(8) 2.76(10) 2.74(10) 2.09(7)
λ 0.845 0.836 0.776 0.788 0.785 0.635

maximum q∗ of S(q): τ1 is the time it takes the middle monomer of a chain to cover a distance
of its own size and τ s

q∗ is the time that φs
q∗(t) needs to decay to 0.3. That is,

g1(t = τ1) = 1 and φs
q∗(t = τ s

q∗) = 0.3. (83)

These times clearly belong to the α regime. Following the analysis performed for the bulk (cf
section 3.3.6) we thus attempt a fit to

τA(T, h) ∝ [
T − Tc(h)

]−γA(h)
. (84)

This equation needs some comments. (i) It delivers, in addition to Tc(h), the exponent γA(h).
The discussion of figure 30 suggests that both quantities depend on h. (ii) The subscript
‘A’ on γA(h) will remind us that the fit result may vary with the quantity A from which the
exponent is extracted (see the discussion of section 3.3.6). In particular, we expect γ1 < γq∗

(cf figure 19); and this is what we find (cf table 2). (iii) Furthermore, we expect [178]—and
find [71]—that the value of Tc(h) is fairly robust. We thus presume the critical temperature
to be independent of the analysed quantity A. (iv) Empirically, equation (84) is found to be
applicable only in a restricted T interval. Both very close to and far away from Tc, deviations
should occur. In practice, we worked with the largest T interval where equation (84) can be
applied (cf section 3.3.6).

Table 2 compiles the results of the analysis. It shows that Tc(h) decreases with h and is
smaller than the bulk Tc for all film thicknesses studied. This clearly reflects that the average
dynamics of the cold melt is speeded up by the imposed confinement.

Moreover, figure 31 suggests that Tc(h) is an important reference point, thereby supporting
the observation made before for figure 30(b). Measuring temperature with respect to Tc(h)

allows us to superimpose bulk and film data for T − Tc(h) � 0.1. This facilitates the further
comparison between bulk and film. For smaller T − Tc(h), bulk and film dynamics deviate
from one another. The relaxation times τ1 and τ s

q∗ increase less in the bulk than in the film.
Appealing back to equation (84), we deduce γ (h) > γ (bulk). If we then assume that γ is
still associated with a von Schweidler exponent b via equation (23), an increase of γ implies
a decrease of b, and thus a stronger stretching of the α relaxation when passing from the bulk
to the films. This is in qualitative accord with the results of figure 30.

Interpolation: film dynamics and mode-coupling theory. While qualitatively correct, the
interpretation based on the MCT prediction (23) appears to fail at a quantitative level. As
pointed out above, the results of table 2 suggest that the stretching of the α relaxation increases
on decreasing h. Figure 30(c) challenges this prediction. From the figure one would rather
conclude that the stretching increases with film thickness. (This qualitative impression is
supported by a KWW analysis [71].)
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Figure 31. Relaxation times τ1(h) (left axis) and τ s
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and the solid lines indicate the exponents γA(h) for h = 5 and for the bulk, respectively. The values
of γA(h) and of Tc(h) are taken from table 2. This figure is adapted from [70, 71].

Should one thus infer that a consistent application of MCT is not possible for our model
polymer films? Not necessarily. On the one hand, we have not attempted to carry out a
quantitative MCT analysis. This would require extensions of the theory to a film geometry in
order to have information on how confinement affects the known bulk results. This information
is not available at present. On the other hand, the conclusion from table 2 that the stretching
increases with decreasing h is mainly supported by the fit results for h � 7. These results
have supposedly the largest systematic errors because the lowest temperatures simulated for
h � 7 are much further away from Tc(h) than those for h � 10 (e.g. T − Tc(h = 5) � 0.045
while T − Tc(h = 20) � 0.025). For h � 7 the simulations should certainly be extended
to lower T so as to scrutinize the h dependence of the stretching of the α relaxation close to
Tc(h).

The previous discussion dealt with the possibility of a quantitative comparison between
MCT and film dynamics. But—as advocated in appendix A—a qualitative analysis should
first be carried out to decide whether such an approach can be worthwhile at all. This analysis
comprises tests of the factorization theorem for the β process via equation (32) and of the time–
temperature superposition principle (TTSP) for the α process via equation (26). We applied
these tests to φs

q(t) and found that both the factorization theorem and the TTSP also hold for
all film thicknesses studied [71]. This justifies attempting a more quantitative approach within
the framework of MCT.

Thickness dependence of Tc(h) and Tg(h). We have seen that Tc(h) decreases with film
thickness. This simulation result has a laboratory counterpart. In experiments on polystyrene
(PS) films, either supported on weakly interacting substrates or freely standing, a depression
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of the glass transition temperature Tg(h) with film thickness is commonly observed28. To a
very good approximation, the depression does not depend on the chain length for the supported
films, and also for the freely standing films, provided that N is not too large29.

Furthermore, the experiments hint at an interesting link between the depression of Tg for
supported and freely standing films. The glass transition temperature of a freely standing
film of thickness h agrees, within the error bars, with the Tg of a supported film of thickness
h/2 [233–235]. It appears as if the substrate could be introduced in the mid-plane of the freely
standing film with negligible perturbation of its properties—at least of those pertinent to the
glass transition; all that the substrate does is to cut the film in halves. While there may be
concerns about the generality of this result, it still suggests that the Tg reduction of PS films is
related to the presence of the free surface which possibly allows for an enhanced mobility of
the monomers30.

This intuitive idea guided the first attempt at modelling the thickness dependence of Tg.
In their seminal study, Keddie et al [231] proposed

Tg(h) = Tg

[
1 −

(h0

h

)δ
]
, (85)

based on the assumption of the existence of a liquid-like layer at the free surface of supported
PS films. The best fit to the measured Tg values was obtained by h0 = 32 Å and δ = 1.8.
Recently, Long and Lequeux derived equation (85) from a percolation model for the glass
transition (see [278] and below).

An alternative parametrization of Tg(h) is given by

Tg(h) = Tg

1 + h0/h
. (86)

The idea for this ansatz is probably correctly attributed to Kim et al [246, 304]. The
attractiveness of equation (86) resides in the fact that it depends on one parameter only, h0.
The bulk glass transition temperature Tg can be determined independently. Kim et al showed
that equation (86) provides a good description of the Tg data for supported films of different
homopolymers [246, 304] and may be extended to the glass transition of random copolymer

28 A compilation of results obtained by numerous experimental techniques for PS films of different molecular weight—
1000 < N < 30 000—on a variety of substrates—mainly SiOx wafers—may be found in [104, 282]. The comparison
of the data reveals two qualitative trends: Tg decreases with film thickness if h � 40 nm; the decrease depends very
weakly, if at all, on N . (Note that there are also accounts in the literature which challenge the generality of these
qualitative trends. For example, [389] reports no depression of Tg for PS films on a platinum surface.) While they are
qualitatively in agreement—this suggests that the PS films interact only weakly with the underlying substrate—there
are quantitative differences between the results. Perhaps these differences are related to the details of the polymer–
substrate interaction. An attractive way to remove this influence appears to be the study of freely standing films
[104, 282]; but there other complications occur (see footnote 30).
29 For freely standing PS films, two regimes can be distinguished, a high molecular weight regime and a low molecular
weight regime [104, 282]. For low molecular weight (N � 3500), Tg reductions are reported that are qualitatively
similar to but stronger than those obtained for supported PS films (see footnote 28). In particular, the reductions are
independent of chain length. By contrast, a strong N dependence is found in the high molecular weight regime, i.e. for
N � 5750. This effect is unexpected from the results of the supported PS films. Even if one argues that the findings
for PS are specific to this polymer—because a much weaker, though qualitatively similar depression of Tg is found for
high molecular weight poly(methyl methacrylate) films [324]—the behaviour of the freely standing PS films appears
to be hard to reconcile with the general conception of the glass transition as a phenomenon associated with motion on
small length scales.
30 The presence of the surface certainly engenders a local environment for the monomers which differs from that in
the bulk. It appears natural to assume—and there is evidence from simulations [253, 257, 260, 261]—that monomers
or chain segments are more mobile when they are in contact with the free surface. One may thus hypothesize that
the observed Tg reductions are caused by a liquid-like surface layer [231]. This idea has spurred a variety of recent
attempts at exploring experimentally the properties of the free surface and its impact on the Tg of the thin films (see
e.g. [232, 233, 237, 250], [390] for another interpretation of the results of [232], and [282, 283] for recent reviews).
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Figure 32. Scaling plot of Tc(h) and Tg(h) according to equation (86). Tc(h) is the critical
temperature of MCT for various film thicknesses h (filled circles; h = 5, 7, 10, 15, 20; N = 10;
bulk Tc = 0.45 (cf table 1), h0 = 1.62). The data are MD results for the Bennemann model
confined between two smooth walls (cf table 2). They are compared to the glass transition
temperatures Tg(h) of three studies: (i) Monte Carlo simulations of a lattice model for freely
standing atactic polypropylene (PP) films [253] (crosses; N = 50; Tg = 391 K, h0 = 6.1 Å;
9.95 Å � h/2 � 48.1 Å). Both Tg and h0 are results of a fit to equation (86). (ii) Experiments on
supported atactic polystyrene (PS) films (spin cast from toluene solution onto silicon wafers) [235]
(open squares; N � 20; Tg = 327 K = bulk Tg for N = 20, h0 = 8.2 Å; 38.5 Å � h � 1678 Å).
(iii) Experiments on supported, high molecular weight PS films [231] (stars; N � 290 00; Tg = 375
K, h0 = 6.8 Å [304]; 110 Å � h � 3100 Å). The data of [235, 253] are reproduced with
permission. The high molecular weight PS data are reproduced from [104] by courtesy of Forrest.
The solid line indicates equation (85) with the parameters mentioned in the text, the dashed line
equation (86) and the dotted line the approximation 1 − h0/h to equation (86), valid for small
h0/h.

films [305]. For homopolymers it was found that the parameter h0 depends on the nature of the
polymer (and perhaps also on the monomer–substrate interaction), but is only weakly affected
by molecular weight [246, 304].

The latter finding prompted us to apply equation (86) to our simulation results. Except
for h = 5 (see footnote 26), we find that the thickness dependence of Tc is well described by
equation (86) (cf figure 32). The same observation was also made in other studies of short
chain polymer films, for instance, in Monte Carlo simulations of freely standing polypropylene
(PP) films [253] and in experiments on supported, low molecular weight PS films [235]—the
latter work proposes a theoretical derivation of equation (86); we return to it later.

In addition to depending on only one adjustable parameter, equation (86) has a further
appealing feature. It suggests a superposition principle. Scaling temperature by the bulk
Tg (or Tc) and film thickness by h0 should allow one to collapse results from experiments
and simulations onto a common curve. Figure 32 exemplifies this superposition property. It
may be considered as a variant of figure 3 in [304] which includes, besides our Tc(h) data,
the simulation results for the PP films from [253] and the glass transition temperatures for
nonentangled PS films from the experiments of [235].

The compilation of the data in figure 32 is instructive in several respects. First, it reveals
that the simulations typically deal with thicknesses h � 10 nm; the numerical results thus
overlap only barely with those of experiments. If one is to realize the goal of obtaining
simulation data pertinent to real systems, the study of thicker films would certainly be
desirable—but this is a computational challenge at present. Second, the results for the low
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molecular weight (Rg = 13 Å [235]) and high molecular weight (Rg � 453 Å [306]) PS
films closely agree with one another. Therefore, it seems unlikely that a possible modification
of the entanglement density [247, 248] or of the chain conformations [294, 295] in the thin
films represents the main cause for the observed Tg depression. Third, for film thicknesses
15 � h/h0 � 300—a typical range in experiments—one cannot decide whether equation (85)
or (86) or the approximation to equation (86), Tg(h) − Tg ∝ 1/h, provides the more accurate
description of the Tg(h) data. On the basis of the Tg shift alone it thus appears hard to validate
or rule out theoretical explanations.

It is tempting to add a fourth point. The superposition of different results from experiment
and simulation might be seen as evidence that the same microscopic mechanism causes the Tg

or Tc reductions. Even if one argues that the polymer–air interface resembles a ‘hard wall’ and
the PS–substrate interaction is weak so that simulations and experiments have qualitatively
similar boundary conditions, we feel that the evidence for one mechanism is not sufficient.

The superposition in figure 32 camouflages a crucial difference. The simulation results for
Tc are obtained from configurations which are in thermal equilibrium. By contrast, the state of
the PS films is a delicate issue (see e.g. [307, 308] and the reviews [282, 283]). These films are
commonly produced by a spin coating technique. During spin coating the solvent—typically
toluene—quickly evaporates, entailing a freezing in of the polymers when there is still about
14% by mass of toluene left. The film must thus shrink in the glassy state as the remaining
solvent is removed. Annealing above the bulk Tg is supposed to achieve this task and to allow
the film to attain equilibrium. The extent to which annealing is efficient in eliminating strains
and chain distortions, possibly engendered by the spin coating process, is a matter of debate.
Therefore, one may wonder whether the Tg reductions are a consequence of the film preparation
technique rather than a reflection of the effect of confinement on the glass transition. Such
concerns do not seem to have been wholly dispelled [233, 283].

Theoretical approaches to the thickness dependence of Tg. The shift of Tg in polymer films
has stimulated attempts to model this phenomenon theoretically [235, 236, 273–281]. We do
not set out to be exhaustive here—a more complete overview may be found e.g. in [283]. We
focus rather on a few approaches which derive equation (85) or (86), or variants thereof. We
explain the underlying assumptions and briefly comment on these theories as we go.

Tg reduction from viscoelastic capillary waves. A continuum model for the shift of Tg in
low molecular weight freely standing films or supported films on structureless substrates (slip
boundary condition) was proposed by Herminghaus et al [235, 236]. The model is based on
four assumptions:

• The polymer film is incompressible: density fluctuations can thus be neglected. The
important collective variables are strain fluctuations.

• Coupling of capillary waves at the free surfaces to the bulk of the film, which is modelled
as a viscoelastic continuum, is suggested as the dominant mechanism for strain relaxation.
The strain relaxation is first treated by a linear continuum theory. Two relaxation rates
enter here, one for the capillary waves, the other for the film. The rate ωc associated
with the capillary waves is the product of the wavevector q of the (harmonic) surface
fluctuations and of the ‘capillary speed’ γ /η; γ and η are respectively the surface tension
and the viscosity of the melt. So we have ωc = γ q/η. The relaxation rate ωf of the
viscoelastic film is given by the classical Maxwell expression E/η (E being Young’s
modulus of the film). Adding the two results gives a q dependent relaxation rate of the
film

ω(q) ≈ E

η
+

γ q

η
. (87)
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• Fluctuations of the capillary waves extend into the film up to a distance of order 1/q .
Since the glass transition should reflect the response of the entire film, only one mode,
q = 1/h, is considered. So we have from equation (87)

ω(h) ≈ E

η

[
1 +

h0

h

]
with h0 = γ

E
. (88)

• The sketched linear theory does not involve memory effects, an important feature of
glass-forming liquids. In the framework of the present model, memory effects should
be associated with the strain relaxation. To incorporate them it is argued that a polymer
chain is strained, that the chain memorizes its initial state when the strain is released, that
the memory kernel scales with temperature as 1/T and that this gives rise to the relation
ω(h)Tg(h) = constant.
Accepting this line of reasoning we are led to ω(h)/ωbulk = Tg/Tg(h), and so we find,
with ωbulk ≈ ωf = E/η,

Tg(h) = Tg

1 + h0/h
with h0 = γ

E
, (89)

that is, equation (86).

This derivation of equation (86) certainly raises questions as regards the pertinence of the
assumptions made. For instance, the work of [309–312] indicates that the q dependence of
the relaxation rate might be more complicated than expected from equation (87). Perhaps a
merit of equation (89) is that the weak N dependence discussed in connection with figure 32
naturally appears from the theory. However, such a weak dependence on chain length is also
obtained by the other approaches sketched below. It might also emerge e.g. from a liquid state
approach, such as mode-coupling theory (here we assume that the resulting predictions for Tc

could be qualitatively transferred to the h and N dependence of Tg). This approach would
establish a link between the dynamics and the local structure of the polymer films; and the
local structure should only depend weakly on N . This and other issues are further discussed
in the commentaries [313, 314].

Tg shifts as a consequence of inhomogeneous density profiles. We have seen that an
impenetrable wall can lead to an inhomogeneous distribution of the density (cf section 4.2.1).
This distinctive feature represents the starting point of a suggestion by McCoy and Curro [274]
that the Tg shift of polymer films—and of geometrically confined liquids in general—might
be attributed to the impact of confinement on the average density of the glass former.

The line of thought for turning this idea into a prediction for the Tg shift runs as follows.
For a film of thickness h we can express the average density ρm(h, T ) as a sum of two parts:
the bulk density ρm(T ) and the surface excess (h, T ). More precisely,

ρm(h, T ) = ρm(T ) +
(h, T )

h
with (h, T ) =

∫ h

0
dz

[
ρm(z) − ρm

]
. (90)

The definition of (h, T ) reveals that the surface excess quantifies deviations of the film density
from the bulk value due to the nonuniform density profile of the film. The surface excess can
be positive or negative. A positive value reflects the propensity of the liquid to ‘wet’ the wall,
a negative value that to avoid it. Thus, ρm(h, T ) may be larger or smaller than ρm at the same
T .

This observation is the basis of the theory of McCoy and Curro. They hypothesize that
the difference of density between bulk and film induces a shift of Tg. For large h, i.e. for small
differences Tg(h) − Tg, one may write

Tg(h) = Tg +
dTg

dρm

∣∣∣∣
p

[
ρm(h, Tg) − ρm(Tg)

] � Tg

[
1 +

h̃0

h

]
, (91)
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where

h̃0 = 1

Tg

dTg

dρm

∣∣∣∣
p

(Tg) with (Tg) = (h → ∞, Tg). (92)

Depending on the sign of the surface excess, the characteristic thickness h̃0—and along with
that, the shift of Tg—can be positive or negative.

An alternative derivation of equations (91) and (92) has recently been obtained by exploring
the potential energy landscape (PEL) of a soft sphere/mean field (SSMF) model for confined
simple glass formers [275, 276]. This model consists of a fluid containing N spherical particles
that are embedded between two parallel substrates. The particles interact through a soft sphere
potential (∼1/rn) in addition to attractions that are treated at a mean field level. Through an
analysis of the configurational entropy associated with the number of potential energy minima
of a given depth (inherent structures; cf appendix B) an ideal glass transition is identified
with the temperature T IG

g (h) at which the configurational entropy vanishes. The ideal glass
transition is a consequence of the repulsive interactions in this model; it is related to the density
of the confined liquid by

ρm(h)T IG
g (h)−3/n = const(h). (93)

From this relation a Tg shift consistent with equations (91) and (92) can be derived via a
perturbation approach that is valid to first order in 1/h (see [275, 276] for a comparative
discussion of the PEL approach and the theory of McCoy and Curro, and [276] for a detailed
interpretation of properties of thin films from a PEL perspective).

Density may be a factor contributing to the shift of Tg in thin films [315]. But a one–one
mapping between changes in density and Tg appears too simplified. This explanation requires
that the average density in the film is different from the bulk value (equation (90)), a situation
not necessarily encountered in experiments on thin PS films where Tg shifts are observed (see
e.g. [103]). Furthermore, recent simulation results obtained by Scheidler et al [94, 267] also
raise reservations. In this work, a binary LJ liquid is confined between two rough amorphous
walls whose features are adapted to those of the liquid. Scheidler et al report that the structural
properties of the confined liquid—in particular the density—are identical to those of the bulk
system. Nevertheless, the confinement strongly affects the dynamics. The walls slow the
relaxation, which should ultimately entail an increase of Tg (see [94] for a fuller discussion).

Tg shift and a model for spatially heterogeneous dynamics. The existence of spatially
heterogeneous dynamics near Tg has been invoked to explain striking dynamic features of
glass-forming liquids and polymer melts (for reviews see [190–193]; cf also section 3.4).
For example, the stretched nonexponential relaxation of dynamic correlation functions or the
decoupling of transport coefficients could result from this heterogeneity which implies that the
dynamics in one region of the supercooled liquid is considerably different (faster or slower)
from that in another region. NMR experiments reveal that the size of a (slow) region in
polymeric and nonpolymeric glass formers near Tg is typically a few nanometres (1–4 nm; see
e.g. [316] and references in [187]).

These experimental observations are the starting point of a mesoscopic model given by
Long and co-workers for the glass transition in general [278, 317] and for the glass transition
of polymer films in particular [278, 279]. The model is based on four suggestions:

• Dynamic heterogeneity occurs due to the existence of slow domains. Slow domains
will result from thermal density fluctuations. It is proposed that these (static) density
fluctuations obey a Gaussian distribution P(ρ, T ).
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It appears plausible to assume that P(ρ, T ) is Gaussian because the domains are supposed
to be mesoscopic31. They should comprise a few tens of monomers. Here, the term
‘monomer’ does not refer to a chemical monomer, but rather to a Kuhn segment. A
domain is thus considered as a subsystem which is sufficiently large that thermodynamic
variables, e.g. its density ρ, may be defined. ρ will fluctuate about the average monomer
density ρm(T ) because a domain is an open system exchanging particles with the reservoir
provided by the rest of the sample.

• Although P(ρ, T ) is sharply peaked at ρm, there is a finite probability of finding ρ > ρm.
Invoking now a free volume model allows one to establish a link between the density and
dynamics of a domain. Domains are assumed to be slow—i.e., they have a lifetime of
the order of the timescale associated with the glass transition (∼102 s)—if their density
exceeds a critical value ρc.

• ρc is defined as the density above which domains with ρ � ρc > ρm(T ) percolate at Tg.
More formally,∫ ∞

ρc

P(ρ, Tg) dρ = p3D
c , (94)

where p3D
c denotes the percolation threshold in the bulk.

• Identifying the glass transition with the percolation of mesoscopic,highly viscous domains
allows one to predict the shift of Tg in a film. Three ingredients are needed. First,
the percolation transition is a critical phenomenon. A critical phenomenon possesses
universal features, such as the critical exponents. For percolation the critical exponents
are independent of the microscopic details of the systems considered and of the type of
percolation (site, bond or continuum); they only depend on the dimension of space [318].
One example is the exponent ν characterizing the size ξ of finite clusters (consisting of
slow domains) close to p3D

c . The size of the clusters diverges as the critical point is
approached from above and below:

ξ ∼ |p − p3D
c |−ν (95)

with ν � 0.88 in 3D [318].
Second, the threshold pc(h) where percolation occurs in a film of thickness h should
depend on the film boundary. One may distinguish two cases: (i) neutral or weakly
interacting boundaries (e.g. PS films on silicon wafers, freely standing (low molecular
weight) PS films [104, 282, 283]); and (ii) strongly interacting boundaries (e.g. PMMA
films on silicon oxide [104, 282, 283]). For case (i) percolation of slow domains can only
occur in the direction parallel to the film boundaries. The critical system is effectively a
two-dimensional one. So one expects, quite generally from the theory of phase transitions
in restricted geometry (see e.g. [319, 320]), pc(h) to shift to larger values with respect to
the bulk ones. For films of sufficiently large thickness h [321] the shift should assume the
form

pc(h) − p3D
c ∝ 1

h1/ν
(case (i)). (96)

For strongly interacting boundaries (case (ii)), however, it is suggested that the boundaries
‘nucleate’ percolation of slow domains, so the films should vitrify as soon as ξ ≈ h. Via
equation (95) this implies

p3D
c − pc(h) ∝ 1

h1/ν
(case (ii)). (97)

31 Note that simulations suggest that the distribution of the local volume around a monomer is not Gaussian. The
distribution appears to be best fit by a log-normal distribution [323].
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Third, equations (94), (96) and (97) provide an implicit expression of the Tg shift in terms
of the density. To make the dependence of Tg on h explicit one needs a relation between
temperature and density, that is, the equation of state of a polymer film. For this, a van
der Waals-like theory is developed. Including this last bit of the model provides us with
an expression for the Tg shift,

Tg(h) = Tg

[
1 ±

(h±
h

)δ
]

(δ = 1/ν � 1.13), (98)

for both strong and weak interactions with the boundaries. The characteristic thicknesses
h± scale with the number of monomers Nc in the slow domains as h± ∼ N−(3ν−2)/6≈−0.11

c .

For the weakly interacting case, equation (98) agrees with the form proposed by Keddie et al
(cf equation (85)). The derivation presented has a particular appeal. It predicts that the
exponent δ is universal; δ should be the same for all systems and independent of the interaction
with the substrate. In practice, this prediction may be hard to verify because δ is close to 1
and a Tg shift proportional to 1/h appears compatible with the experimental data (see e.g. the
discussion of figure 32; for a recent test of equation (98) see e.g. [322]). From the point of view
of simulations another concern may arise. To our knowledge, attempts to reveal correlations
between the dynamics and density of clusters of slow particles have failed [192, 197, 323] or
remained inconclusive [32]. This may be due to the high temperatures (T � Tc) typically
studied in simulations. Perhaps there is room for progress here if the analysis could be refined.

Final comparison and discussion. After having described in some detail three theoretical
approaches for explaining the shift of Tg in confined (polymeric) liquids, it appears appropriate
to briefly compare these theories with each other. In this respect, we want to mention three
points:

• The Tg shifts derived (equations (89); (91), (92); and (98)) depend only weakly
on the molecular weight. The theories should thus apply to the glass transition of
supported polymer films and freely standing (PS) films of not too high molecular
weight [104, 282, 283].
The strong dependence of Tg(h) on chain length, observed for freely standing high
molecular weight PS films [104, 282] (which is hard to reconcile with the common
perception of the glass transition as a local phenomenon), is at present not incorporated
in the theories. If the effect is not specific to PS films [324], either additional relaxation
mechanisms [273] or other approaches [277] must be considered.

• The main goal of the approaches of Herminghaus et al [235, 236] and McCoy and Curro
[274] is to model the thickness dependence of Tg. On the other hand, the approach by
Long et al has a larger scope. It first proposes a mechanism for the glass transition in the
bulk [278, 317] and then extends the theory to the glass transition of confined (polymeric)
liquids [278, 279]. Comparing to the former two approaches, one finds that the finite size
effects in the theory of Long et al apparently have an altogether different flavour. They
are associated with the truncation of the critical fluctuations of a percolation transition by
the system size.
In the theory of critical phenomena an extensive framework, the theory of finite size scaling
(see e.g. [105, 325]), has been developed to deal with these system size dependences.
There, finite size effects are not a nuisance, but provide us with a means to reveal the
universal features of the phase transition. If we revert to the glass transition and the
suggested link with a percolation phenomenon, the question arises of whether finite size
effects could not be exploited similarly to test the validity of the theory. This might be an
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interesting direction for future research (see e.g. [326] and also the discussion at the end
of section 4.4).

• The predictions for the shift of Tg depend on the choice of the boundary condition at
the polymer–substrate or polymer–air interfaces. Here, (plausible) assumptions were
made in the theories—e.g., the polymer–air interface is ‘neutral’, the polymer–substrate
interactions may be ‘weak’ or ‘strong’.
Given the importance of these assumptions for the direction of the Tg shift it seems
worthwhile to seek for a more molecular understanding of the boundary conditions. Such
a microscopic approach would be in line with the view—mainly discussed in this article—
that the local packing of the particles and its impact on the relaxation is an important
ingredient for the description of the dynamics of glass-forming liquids. The goal of
modelling the liquid and the boundary condition at the same microscopic level still appears
distant, but not completely out of sight; microscopic treatments of the boundary conditions
in confined simple liquids have been suggested in the literature (see e.g. [327, 328]). In this
respect, the simulation can perhaps provide an element by scrutinizing the local dynamics
in layers at different distances from the wall. We want to present such an analysis next.

4.3.3. Layer-resolved dynamics. When trying to extend the layer-resolved analysis of the
structure (cf section 4.2) to the dynamics of polymer films the question arises of how local
time-displaced correlation functions should be defined. Two prescriptions for such a definition
are conceivable:

(i) Let ra
i = (sa

i , za
i ) denote the position of monomer a in a tagged chain i . The first

prescription associates a monomer with a bin of width �z centred at distance z from the
wall if its initial z coordinate, zi (t0), is located in this bin. Following this definition the
layer-resolved mean square displacement, averaged over all monomers, assumes the form

g0(t; z) =
〈∑N

a=1 δ(z − za
i (t0))

[
sa

i (t) − sa
i (t0)

]2∑N
a=1 δ(z − za

i (t0))

〉
. (99)

There are two main arguments in favour of equation (99): it is conceptually simple, and
it can be implemented easily. These are probably the reasons that equation (99) has been
utilized in several simulation studies (see e.g. [94, 254, 255, 260, 261, 265–267, 271, 272]).
However, there is certainly one respect in which it is not so satisfying. A monomer will
eventually leave the layer it was initially in. A prescription which catalogues the monomers
only according to their starting point will mix at time t contributions from monomers which
are still in the original layer and those that have already left it. Obviously, the probability
of escaping from the original layer increases with t . The desired local character of the
dynamics will thus be lost for large times. A rough estimate of the threshold beyond
which the averaging over neighbouring layers is no longer negligible may be obtained as
the time it takes a monomer to cover a distance of �z/2 in the direction perpendicular to
the wall.

(ii) The analysis can, however, be adapted to ensure locality. We have to impose the constraint
that a monomer remains at all times t0 � t ′ � t in the same layer. For the monomer MSD
g0(t; z) the definition then reads

g0(t; z) =
〈∑N

a=1

∏t
t ′=t0

δ(z − za
i (t

′))
[
sa

i (t
′) − sa

i (t0)
]2∑N

a=1

∏t
t ′=t0

δ(z − za
i (t

′))

〉
. (100)
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This second prescription also has strengths and weaknesses. It certainly delivers what
we require: equation (100) filters out those monomers that persist in a given layer and
thereby provides a true diagnostic of local mobility. However, this diagnostic is limited
to ‘short’ times. Since a monomer that has left its initial layer may not be included in
the computation of g0(t; z), and the number of such monomers increases with time, the
accuracy of the data deteriorates at long t . This problem cannot be circumvented by
increasing the number of independent configurations of the system because in the limit
t → ∞, any monomer will have left its initial layer.

A detailed comparison of equations (99) and (100) was carried out in [70] for our model
polymer films between smooth walls. Here, we will focus on the second prescription, provide
examples of this analysis and also discuss an extension of the simulations to polymer films
confined by rough—crystalline or amorphous—walls.

Layer-resolved dynamics: smooth walls. The prescription of equations (99) and (100) for
how to obtain information on the local dynamics in specific layers can be applied to any dynamic
correlation function; e.g. to different mean square displacements (MSDs) [70], intermediate
scattering functions and Rouse modes [71]. (In the latter case—and for other quantities related
to the chain relaxation—the layerwise resolution is associated with the z position of the centre
of mass of the chains.)

Figure 33 provides representative examples. It displays for h = 20 at T = 0.46 two layer-
resolved dynamic quantities: the MSD g0(t, z) and the incoherent intermediate scattering
function φs

q(t, z) (equation (40)) at q = 6.9. Both correlation functions are calculated
according to the more stringent condition of equation (100). The data presented in figure 33
confirm a result that one might have expected from the discussion of section 4.3.1. The
monomer mobility increases as we go from the centre of the film toward the wall. While there
is a clear two-step relaxation—characteristic of the cold melt close to Tc—in the centre, this
feature is gradually lost on approaching the wall and is absent at the wall32. Seemingly, the
forces acting on monomers at the wall (monomer–wall and monomer–monomer interactions)
are very different from those in the bulk-like centre of the film, and this leads, in the present
case, to faster relaxation.

It is tempting to relate this interpretation (about the ‘forces’) to the local structure of
the films. In the centre, the film is homogeneous, as evidenced by the monomer density
profile (see the inset of figure 33(a)), its structure is bulk-like (cf figure 27) and so both
g0(t, z = 9.5) and φs

q(t, z = 9.5) agree well with their bulk counterparts. By contrast, a quick
look back at figure 27 reminds us that the monomer packing in the layer next to the wall differs
from that in the bulk. Certainly the packing is there still liquid-like, but the probability of
finding a nonbonded nearest neighbour is reduced relative to that for the bulk, and the pair
distribution function is of shorter range. These structural features qualitatively agree with the
bulk behaviour, not at T = 0.46, but at higher T [63]; and they find a counterpart in the dynamic
properties. Both g0(t, z = 1.5) and φs

q(t, z = 1.5) (figure 33) resemble the corresponding
bulk results at temperatures higher than T = 0.46 (see e.g. figure 30).

32 An intelligible concern is that the average density in a layer near the wall might be smaller than in the bulk. This
could give rise to faster dynamics. This concern may, however, be dispelled. We tested that the results presented in
figure 33 are not a consequence of our choice for the layer thickness, �z = 1. Qualitatively the same behaviour
is obtained for �z = 0.35 (however, the statistical accuracy of the data deteriorates much faster than for �z = 1).
With this choice, for instance, only monomers close to the first peak of the monomer density profile contribute to
the layer-resolved mean square displacement. In spite of the high density in that layer—it is larger than the bulk
value—we find an accelerated dynamics relative to the bulk.
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Figure 33. (a) Main figure: layer-resolved mean square displacement (MSD) g0(t, z), averaged
over all monomers of a chain, versus time t for a film of thickness h = 20 at T = 0.46
(Tc(h = 20) = 0.415, Tc = 0.45; see table 2). z denotes the distance from the (left) wall.
The MSDs are calculated parallel to the wall and multiplied by 3/2 (to put them on the same scale
as the bulk data (•) which are averaged over three spatial dimensions instead of over only two for
the film). g0(t, z) is obtained as an average over all monomers which remain for all times shown in
a layer of width �z = 1 and centred at z (cf equation (100)). Eventually, monomers will leave the
layer in which they were initially. This gives rise to a loss of statistical accuracy at long t ; the data are
thus sometimes truncated at late times where large statistical noise occurred. The average behaviour
of the film (average over all layers) is indicated by crosses (×). The dashed horizontal line depicts
6r2

sc (�0.054; the Lindemann localization length of the bulk). The subdiffusive polymer-specific
behaviour (∼t0.63; cf equation (52)) is shown by a solid line. Inset: monomer density profile ρm(z)
versus z for h = 20 and T = 0.46. The centres of the layer for which g0(t, z) is shown in the main
figure are indicated. The dotted horizontal line depicts the bulk density ρm = 1.038. This figure
is adapted from [70]. (b) Layer-resolved incoherent intermediate scattering function φs

q (t, z) at
q = 6.9 (≈ maximum of S(q); cf figure 30) and T = 0.46 for h = 20; the symbols and lines are
the same as for the main part of (a).

This structure–dynamicscorrelation at the wall (the ‘boundary condition’) seems to fuel—
in the present case of smooth walls—a form of continuous tempering: ‘fast’ monomers at the
wall transfer part of their impetus to monomers in the adjacent layer, which in turn partly excite
a high monomer mobility in the next deeper layer and so on until the wall-induced stimulus is
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Figure 34. Layer-resolved relaxation time τ0(z, T ) versus distance z from the wall for a film
of thickness h = 20. Here, z is defined as the distance of the centre of a layer from the (left)
wall. The thickness of a layer is �z = 1. τ0(z, T ) is computed from the local MSD g0(t, z) via
equation (101). When calculating g0(t, z) only those monomers that remained in the layer at z for
all times (equation (100)) were considered. The dashed lines for T = 0.47 and 1 indicate the results
of a fit to equation (102). The fits depend on two parameters, A(T ) and ξτ (T ). The prefactor τ0
may be obtained independently from bulk simulations (τ0(T = 1) = 6.67, τ0(T = 0.47) = 2500).
As no bulk data are available for T < 0.46, the analysis was restricted to T � 0.46. We find a
weak temperature dependence for the prefactor (A(T = 1) = 6.0, A(T = 0.47) = 7.5). The
dependence of ξτ on T is stronger: ξτ (T = 1) � 0.81, ξτ (T = 0.47) � 1.78 (cf figure 35). This
figure is adapted from [70].

damped and bulk behaviour is recovered. This gradual damping could (or should) allow one
to extract a length scale ξ characterizing the penetration of the wall effects into the inner part
of the film.

One approach for determining ξ utilizes a local relaxation time as an intermediate step.
Following equation (83) we may introduce such a relaxation time via

g0(t = τ0(z, T ), z) = 1. (101)

Thus, τ0(z, T ) is the time it takes a monomer to move across its own size parallel to the wall
in a layer at distance z from the wall.

Figure 34 depicts the results of this analysis for h = 20 and various temperatures. Not
unexpectedly, we find that wall effects are small for high T . At T = 1, for example, τ0(z)
is independent of z in a large portion of the film. The corresponding constant value of τ0(z)
agrees with the relaxation time τ0 obtained by applying equation (101) to the bulk data for g0(t).
Upon cooling, however, wall effects become pronounced. They penetrate more and more into
the film, the region of constant relaxation time shrinks and it should finally disappear when
the perturbations emanating from the two walls overlap in the centre of the film. Such finite
thickness effects seriously interfere with the desired determination of ξ . They should be
avoided. For h = 20, the thickest film studied here, they become prominent if T � 0.45. We
thus restricted the analysis to T � 0.46.

Quantifying the range of wall effects. In the following, we want to extract a length
scale from the range over which a (static or dynamic) quantity deviates near the wall from bulk
behaviour. When addressing this issue one is faced with the problem that there appears to be no
theoretical concept to guide the analysis. One thus has to resort to an empirical parametrization
of the data. Depending on the quantity under consideration different parametrization have been
proposed (see e.g. [94, 267, 271, 272]).
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Figure 35. Various correlation lengths ξ versus 1/T for a film of thickness h = 20: ξτ = the
decay length obtained from the local relaxation time τ0(z, T ) via equation (102), ξρ = the decay
length of the monomer density profile calculated from equation (105) and ξg = the decay length of
the pair distribution function g(r) determined via equation (103) (g(r) is averaged over the film;
r is the monomer distance measured parallel to the walls). All correlation lengths are divided by
their value at T = 1 (ξτ = 0.814, ξρ = 0.674, ξg = 0.980). Furthermore, a bulk result is also
shown: the weight-averaged cluster size 〈n(tmax

clu )〉w (divided by 2) at the time tmax
clu when the size

of the clusters of mobile monomers peaks (cf figure 23(b)). The dotted vertical line indicates the
MCT critical temperature in the bulk (Tc = 0.45); the grey dashed line represents an Arrhenius
behaviour ξ(T )/ξ(1) ∝ exp(0.8/T ).

Simulations of a confined binary LJ liquid [94, 267] suggest the ansatz

ln

(
τ0(z, T )

τ0(T )

)
= −A(T ) exp

(
− z

ξτ (T )

)
(102)

to model the z dependence of some local relaxation time, such as τ0(z, T ). Equation (102)
introduces the length scale ξτ (T ) to quantity the range of the deviations of τ0(z, T ) from the
bulk value τ0(T ). In addition to ξτ (T ), A(T ) is a further adjustable parameter which should,
however, depend only weakly on temperature. The fact that this ansatz was found to provide
an accurate description of various local relaxation times, not only for smooth walls, but also
for rough amorphous walls [94, 267], prompted us to apply equation (102) to our simulation
results for τ0(z, T ).

Representative examples of the analysis are included in figure 34. They illustrate that the
data are compatible with equation (102), in accord with the results reported in [94, 267]. Also
in agreement with [94, 267] we find that ξτ (T ) increases only slightly—by a factor of ∼2.5
(figure 35)—in the interval 0.47 � T � 1 and, furthermore, that the numerical value of ξτ is
small (ξτ ∼ 1 =̂ the monomer diameter).

A small length scale characterizing the range of the wall effects is not obtained only from
τ0(z, T ); other quantities yield similar results. Figure 35 provides two examples, the length
scales ξρ and ξg . They are derived from static quantities, that is, from the monomer density
profile (ξρ ) and from the film-averaged pair distribution function g(r) (ξg). By analogy to the
work of [267] we determined ξg by fitting the envelope of the pair distribution function via

g(r) − 1 ∼ exp

(
− r

ξg

)
. (103)



Topical Review R931

To extract a length scale from the density profile ρm(z), we followed a prescription proposed
in [297]. We first subtracted from ρm(z) the bulk density ρm and then took the absolute value.
This provides us with a quantity that decays from some value at the wall to 0 in the centre of
the film. After normalization, this quantity may be interpreted as the probability density pm(z)
of finding a monomer at distance z,

pm(z) = |ρm(z) − ρm|∫ h/2
0 dz |ρm(z) − ρm| . (104)

The first moment of pm(z) defines a decay length ξρ for the density profile, i.e.,

ξρ =
∫ h/2

0
dz zpm(z). (105)

Figure 35 shows that ξg(T ) increases only little on cooling (as it should for a glass-forming
system), the increase being much weaker than that of ξτ (T ). The situation is different for
ξρ(T ). One may recognize two features from figure 35.

First, ξτ is roughly proportional to ξρ . The spatial inhomogeneities measured by ρm(z)
apparently determine—for the present system—the range of the depression of τ0(z, T ) relative
to the bulk relaxation time.

Second, the T dependence of ξτ and ξρ is compatible with an Arrhenius law and close to
that of a ‘length scale’ identified previously in the bulk, the weight-averaged cluster size 〈n〉w

of highly mobile monomers; cf section 3.4 (see [94, 267] for similar results for a confined
binary LJ mixture). Whether the similarity of ξτ and 〈n〉w is accidental or not is unclear at
present; this certainly calls for further analysis. The weak Arrhenius-like dependence of the
length scales on T is in stark contrast to the strong non-Arrhenius-like increase of structural
relaxation times for the cold melt (figures 19 and 31). If there existed a correlation between
the bulk relaxation time and these length scales, the previous argument suggests that it should
be more complicated than a power law (i.e., τ ∼ ξ x with x = constant; see e.g. [329] for such
a ‘more complicated’ form suggested in simulations of a water model).

Layer-resolved dynamics: smooth walls versus crystalline and amorphous walls. A key
point emerging from the discussion of the previous sections is that the smooth, structureless
walls realized by equation (4) lead—for our model polymer films33 —to a boundary condition
which enhances monomer mobility and ultimately entails a depression of Tc (or of Tg).

It should be possible to reverse this trend by switching on sufficiently strong
attractions between the monomers and the walls. This is evident e.g. from the work of
references [259, 260, 263] (see also section 4.4).

Perhaps this effect of monomer–wall attractions is not too surprising. The situation
becomes, however, more subtle if no or only weak preferential attractions are involved, but the
wall exhibits some ‘roughness’ at the monomer level. This is suggested e.g. by the work of
references [94, 263, 267, 330] (see also section 4.4).

33 A caveat must be mentioned here. From the results presented one should not draw the general conclusion that smooth,
structureless walls always lead to an acceleration of the dynamics in the supercooled state and, so, to a depression of
Tg. Simulations of binary soft sphere mixtures confined between smooth walls provide counter-examples [270, 391];
they rather find the dynamics of the confined liquid to slow down relative to the bulk. A tentative explanation of this
difference from our findings could be as follows. References [270, 391] also report that there are oscillations of the
particle density close to the walls. The amplitude of these oscillations is, however, much more pronounced than in
our case. This is a consequence of the model parameters employed in [270, 391]. For the mixtures there are densely
filled layers of particles stacked on top of one another at low T —to some extent, similar (but stronger) to what we find
for the crystalline walls (cf figure 36). Motion then has to occur in an environment of high density; it might therefore
be slower than in the bulk.
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Figure 36. Monomer density profile ρm(z), normalized by the bulk density ρm, for different kinds
of walls: smooth walls (equation (4); solid line), crystalline walls (equation (5); dashed line) and
amorphous walls (see the end of section 2.3; dotted line). z denotes the distance from the (left)
wall (cf the discussion of figure 25). The wall position, z = 0, in the case of crystalline walls is
associated with the z coordinate of the crystalline layer of the wall atoms (arranged on the sites of a
triangular lattice). For amorphous walls, it coincides by construction with the wall position which
is realized in the case of smooth walls (cf section 2.3). The arrows at z = 1.5 and z = 4.5 indicate
the centre of a layer (of width �z = 1) for which the local dynamics is analysed in figure 37.
All simulations were carried out with the Bennemann model for a glass-forming polymer melt
(section 2.2) at temperature T = 0.55 and pressure p = 1. For these parameters the bulk density
is ρm = 1.015. In all cases the film thickness is h = 20.

We will focus on this latter situation here. We shall be concerned with the effect of
crystalline and amorphous walls on the structure and dynamics of our model polymer films.
The walls have an LJ interaction with the monomers, which is identical to that of the bulk
(cf section 2.3); they thus merely represent a barrier with a roughness on the scale of the
monomers.

The following discussion will be substantially briefer than it might be; we will concentrate
on just two examples which illustrate the main qualitative changes with respect to smooth walls:
the monomer density profile ρm(z) and the layer-resolved MSD g1(t, z) of the middle monomer
of a chain (see equation (82) for the definition of this MSD in the bulk). The more restrictive
prescription, equation (100), was employed to calculate g1(t, z).

Figure 36 depicts the density profile ρm(z) obtained from simulations at T = 0.55,
p = 1 and h = 20 for smooth, crystalline and amorphous walls. The crystalline walls cause
pronounced density oscillations in the polymer film. There are sharp maxima followed by deep
minima, giving rise to an overall fairly long range decay of ρm(z) compared to those for the
two other wall types—and this although the distance between atoms on the triangular lattice is
incommensurable with the bond length of the chains. Apparently, monomers in contact with
the wall (at z � 0.5) still largely adapt their positions to the underlying crystalline structure.

We may expect this partial locking into registry of the monomers at z � 0.5 to impose
important constraints on the monomer mobility in subsequent layers. This expectation is indeed
borne out, as revealed by figure 37. The figure shows that the MSD g1(t, z) for layers centred
at z = 1.5 and 4.5 can be substantially less than in the bulk. At z = 1.5, for instance, we find
an extended plateau symptomatic of the transient monomer localization (see section 3.3.2).
The value of the plateau is smaller than the MSD corresponding to the Lindemann localization
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Figure 37. Layer-resolved mean square displacement (MSD) of the middle monomer of a chain,
g1(t, z), versus time t for films of thickness h = 20 at T = 0.55 and different wall types as
indicated. z denotes the distance from the (left) wall. The MSDs are calculated parallel to the
wall and multiplied by 3/2 (to put them on the same scale as the bulk data (solid line) which are
averaged over three spatial dimensions instead of over only two for the film). g1(t, z) is obtained
as an average over all monomers which remain in their initial layer at z (cf equation (100); layer
width �z = 1). g1(t, z) is analysed for two layers, z = 1.5 and 4.5. The dotted horizontal line
depicts 6r2

sc (�0.054; rsc = the Lindemann localization length of the bulk).

length (for a definition see the discussion following equation (39)). If such a displacement was
observed in the bulk, it would correspond to T < Tc.

The crystalline walls thus realize—without the need to exert specific attractions—a
boundary condition that slows down, relative to the bulk, monomers in neighbouring layers.
The same feature is also observed for the amorphous walls. They thus fall in the same category
of boundary conditions as the crystalline walls, although the monomer density profile for the
amorphous walls closely resembles the profile of the smooth walls (cf figure 36). The latter
observation is important. It reveals that the density profile does not encapsulate all contributions
necessary for understanding the dynamics and ultimately predicting the shift of Tg in confined
liquids. This challenges the view described in the discussion of equation (91).

4.4. Brief survey of other simulation work

Over the past decade the glass transition of confined liquids has received considerable attention
in simulation studies. Various systems—simple liquids [94, 266–268, 270, 272], hydrogen-
bonded or molecular liquids [269, 271], silica [265], polymers [253–264] and confining
geometries, pores [266, 269, 271], fillers in glass-forming matrices [254, 255, 268], thin films
[94, 253, 256–265, 267, 270, 272]—have been considered.

Certainly, this list is not exhaustive; and certainly, all of the above-mentioned works would
deserve a detailed presentation. Yet, our discussion will be substantially briefer than it might
be. Instead of giving a comprehensive account we have chosen to describe a small number of
results which we believe to be of particular interest.

Films—but also pores and filler particles in a glassy matrix. A thin film geometry is a popular
choice for spatial confinement in many recent simulations. For glass-forming binary mixtures,
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freely standing films [272] and films between two smooth [94, 267, 270] or rough walls [94, 267]
have been investigated. For polymer melts, simulations have explored properties of freely
standing films (bead–spring and lattice models [256–260], lattice and continuum models of
atactic polypropylene [253, 261]), supported films (bead–spring models [259, 260, 263, 264])
and films between flat or structured surfaces (bead–spring model [330], polystyrene between
mica-type surfaces [262]).

The chain lengths employed in these simulations are in general smaller than or close to the
entanglement length Ne (15 � N � Ne ≈ 32 (see footnote 6) for bead–spring models). Since
the typical range of film thicknesses is 10 � h � 25 (although thinner [260, 262] and thicker
films [259, 260] were also investigated), effects of confinement on polymer conformation
should be small (because h > Rg [295]). For simple liquids, a similar range of thicknesses
(10 � h � 20) is commonly studied [94, 267, 270, 272].

These simulations provide numerous information on the equilibrium dynamics above Tg

[94, 257, 267, 330], the freezing process during continuous cooling and the glass transition
itself [253, 256, 260, 263, 264, 270], and mechanical or dynamical features in the glassy state
[256, 261, 272]. Here we have chosen to mention the following results:

• For freely standing (polymer) films Tg(h) generically decreases below the bulk value for
small film thickness [253, 259, 260].
If the glass former is in contact with a substrate (supported films, films between two walls),
the shift of Tg depends on the ‘particle–wall interaction’. Here, the term ‘particle–wall
interaction’ has a twofold meaning: (i) Particle–wall attraction. Large enough attraction
can lead to an increase of Tg [259, 260, 263]. (ii) Surface topography. Even without
preferential attraction the dynamics may be strongly slowed down if particles become
caged in cavities at the surface of the substrate (cf e.g. [94, 267, 330]; see also the
discussion under the heading ‘Layer-resolved dynamics: smooth walls versus crystalline
and amorphous walls’ in section 4.3.3). This steric effect may entail an increase of Tg.

• From the simulations [94, 256, 267, 330] it transpires that the density profile is not the
sole factor determining the relaxation behaviour of confined glass formers and, so, their
glass transition.
The results of [267] provide a case in point. In this work, a model binary mixture is
confined between two kinds of walls: rough walls and smooth walls. Rough walls are
created in two steps: first, a bulk liquid is equilibrated at the desired temperature and then
all particles in slices a distance h apart are frozen. As the structure of the walls is adapted
to that of the liquid in between, the density profile is flat and has the bulk value. Confining
the liquid by smooth walls, however, would produce density oscillations similar to those
reported in section 4.2.1. To avoid these oscillations the authors of [267] added a term to
the Hamiltonian which penalizes deviations from constant density. Thus, in this case too
a flat profile having the bulk density is obtained.
For both systems the layer-resolved incoherent intermediate scattering function φs

q(t, z)—
defined through the first prescription, equation (99)—was calculated and a relaxation time
was determined via φs

q(τ
s
q(z), z) = 1/e. Figure 38 compares for both kinds of walls the z

dependence of τ s
q(z) obtained at the maximum of S(q) of the A particles. Obviously, the α

relaxation is slowed down on approaching the rough wall, but accelerated on approaching
the smooth wall. So we find different dynamics, although the density profile is flat in both
cases.

• The results of figure 38 suggest two further conclusions. (i) The film dynamics at low T
is very heterogeneous; near the wall the relaxation times differ by orders of magnitude.
(ii) The wall-induced fast or slow relaxation continuously turns into bulk-like relaxation
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Figure 38. Structural relaxation time τ s
q(z) for the A particles of a binary LJ mixture at q = 7.2

(=the maximum of the A–A structure factor) as a function of particle distance z from a rough wall
(a) and a smooth wall (b). The curves refer to different temperatures T (indicated in the middle
of the figure). The MCT critical temperature of the bulk is Tc � 0.435 [155, 168]. The filled
diamonds indicate the bulk values of τ s

q (T ). The solid lines represent fits to equation (102). (For
rough walls, the rhs of equation (102) has to be adapted by making the change A(T ) → −A(T ).)
The resulting dynamic length scales ξτ increase on cooling, roughly according to an Arrhenius law,
but typically remain small (ξτ � 2). This behaviour agrees with the results of figure 35 for our
polymer model. The figure (adapted) is taken from [267] (reproduced with permission).

with increasing distance from the wall; this crossover remains continuous for all T ; and
its range grows on cooling34.
The propagation of enhanced or reduced mobility from the boundary toward the interior
of the film has also been observed in recent studies for freely standing [257] and supported
polymer films [264]. These studies carried out a cluster analysis, of highly mobile
monomers in the case of the freely standing film and of immobile monomers for the
supported film. In both cases, it was found that clusters start at the interface and penetrate
into the film.

• Figure 39(a) [94] shows the layer-resolved incoherent scattering function φs
q(t, z) which

corresponds to the relaxation time τ s
q(z) (figure 38(a)). The figure also depicts the

scattering function of the bulk (circles) and the scattering function averaged over the
film (crosses). Compared to the bulk correlator, that of the film has a peculiar shape.
The α relaxation seems to occur in two steps. In fact, it is not possible to model the
α relaxation by a single KWW function (equation (28)) [94]. Two KWW functions are
required, one for the early α relaxation and another one to describe the slowly decaying
tail for t � 5000. The stretching exponent of this slow decay is very small, βK

q=7.2 ≈ 0.3.
Thus, just on the basis of the data averaged over all layers of the film,one could suggest that
there are two distinct processes, a fast one corresponding to a bulk-like phase in the film
centre and a slow one associated with an interfacial phase. However, the layer-resolved
analysis of figure 39(a) reveals that this interpretation may be misleading. The strongly
stretched tail of the average correlator results from the smooth gradient in the relaxation
of φs

q(t, z) which slows down on approaching the wall (see [94] for a comprehensive
discussion).

34 The smoothness of this crossover seems hard to reconcile with a layer model, an often invoked interpretation
for the relaxation of confined glass-forming liquids (see e.g. [392, 393]). This model assumes the coexistence of
layers—typically one or two interfacial layers and an inner layer—with distinct mobilities (see e.g. [250] for a topical
discussion of such models).
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Figure 39. (a) Layer-resolved incoherent scattering function φs
q (t, z) at T = 0.55 and q = 7.2

for the A particles of a binary LJ mixture (bulk Tc � 0.435; q = 7.2 = the maximum
of the A–A structure factor). The mixture is confined between two amorphous walls (film
thickness h = 15). The solid lines depict φs

q (t, z) for the following distances from the wall:
z = 0, 0.25, 0.5, . . . , 2.5, 3, 4, 7.5. The crosses indicate the average over all layers of the film, the
circles the scattering function for the bulk. The dashed horizontal line indicates the criterion 1/e
utilized to define the relaxation time τ s

q (z) shown in figure 38(a). The figure (adapted) is taken
from [94] (reproduced with permission). (b) Layer-resolved incoherent scattering function φs

q (t, d)

at T = 0.4 and q = 7.08 (=the maximum of S(q)) for a polymer melt (Bennemann-like model)
surrounding a filler particle. The chain length is N = 20, the melt density is ρm = 1 (dashed
horizontal line in the inset). The filler is of icosahedral shape and carries LJ sites at the surface.
As the strength of the particle–monomer LJ potential is stronger than that between the monomers,
monomers are attracted by the filler. The solid lines and the squares show φs

q (t, d) for different
distances d from the surface of the filler particle. The location of the first two layers is illustrated in
the inset which depicts the monomer density profile ρm(d/Rg) (Rg � 2.17). The crosses indicate
the average over all layers. The figure (adapted) is taken from [254] (reproduced with permission).

• The relaxation dynamics displayed in figure 39(a) is not limited to the system studied
in [94]. Figure 39(b) provides a further example. It depicts the layer-resolved incoherent
scattering function for a polymer melt (Bennemann-like model) surrounding a highly
faceted, but nearly spherical filler particle [254, 255]. The filler has a structured surface
and an attractive interaction with the monomers. Evidently, the data of figures 39(a) and
(b) are qualitatively very similar, although the glass-forming liquids are different. Also
for the polymer melt/filler particle system the late α process of the average dynamics
exhibits a strongly stretched tail. The amplitude of this tail can be tuned by the monomer–
filler interaction. Strong attraction leads to a more pronounced tail; vanishing attraction
suppresses the tail [254, 255]. In the latter case, the scattering function resembles that of
the bulk.
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• One can gain additional insight into the slow relaxation of particles in contact with a
structured wall by investigating the self-part of the van Hove correlation function—that
is, the probability of finding a particle at time t at some distance from its initial position (cf
equation (33)). For times in the α relaxation regime and temperatures well above Tc, the
van Hove function displays features unfamiliar from the bulk. There is a clear two-peak
structure. The first peak reflects particles that remain trapped in their cages, while the
second peak, located on a length scale corresponding to the wall structure, reveals that
particles have migrated to neighbouring wells. Evidence for this kind of ‘hopping motion’
is found e.g. for the binary LJ mixture discussed above [94], for a polymer melt adsorbed
on a structured surface [330] and for model of liquid toluene confined in cylindrical
mesopores [271]. This relaxation mechanism could be generic when a liquid may lock
into registry with the surface topography.

In summary, we see that the features of dynamic correlation functions and related quantities can
be fairly complex for confined glass-forming liquids. The simulations suggest that this complex
behaviour has the following causes [94]: (i) the bulk-like slowing down of the dynamics on
cooling; (ii) a smooth transition of enhanced or retarded relaxation relative to the bulk from the
surface to the interior of the confined liquid; (iii) a growing range of this transition on cooling
so that wall-induced perturbations of the dynamics may propagate across the entire liquid for
sufficiently strong confinement and/or low T .

It seems that progress of our understanding hinges on whether it is possible to take into
account the interplay of the three aforementioned points into a theoretical framework. We feel
that such an approach will be promising if it treats the impact of boundary effects on the bulk
dynamics at a microscopic level.

Comparison with experiments on supported PS films. Most experimental approaches to the
glass transition in restricted geometry have been concerned with the average response of the
confined liquid. A notable exception is the recent work of Ellison and Torkelson [250]. The
authors employed a fluorescence/multilayer technique in which a thin fluorescent polystyrene
(PS) layer is incorporated in an unlabelled PS film (N ≈ 4000; Rg ≈ 17 nm). This allowed
them to measure the local Tg at different positions in the film.

Many interesting results are obtained from this approach. (i) The Tg of a fluorescent layer,
placed on top of a bulk-like (∼270 nm thick) underlayer, decreases strongly with the thickness
of the fluorescent layer. (ii) The Tg of a thin fluorescent layer (14 nm thick) at the surface
of the film varies nonmonotonically with the overall film thickness. (iii) The Tg of a 14 nm
thick fluorescent layer depends on its location in the film. When the layer is covered by an
unlabelled PS layer whose thickness exceeds the range of 18–30 nm, it exhibits bulk Tg. For
smaller thicknesses of the cover layer the Tg of the fluorescent layer is depressed relative to
the bulk value; the depression increases with decreasing h of the cover layer.

From their analysis Ellison and Torkelson draw the following conclusions [250]: ‘The
results disallow the premises associated with simple two- and three-layer models that do not
account for a smooth gradient in cooperative dynamics across the film thickness’. Furthermore,
‘the most important length scale . . . is the distance over which a perturbation in cooperative
dynamics at one location, for example, the free surface layer, affects the dynamics elsewhere
in the film. Thus, if on average the cooperative dynamics in a layer are perturbed to be
substantially enhanced relative to the bulk (as at a free surface), then, on average, adjoining
layers must also have their dynamics perturbed, albeit to a lesser extent.’

These conclusions qualitatively agree with those drawn from the simulations.
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Annex: a type of confinement special to computer simulations. Computer simulations are
invariably conducted on systems whose size is small on the thermodynamic scale. Therefore,
for a bulk system a special kind of confinement already exists due to the finite size of the
system. The nature of possible finite size effects depends on the kinds of boundary conditions
that are applied at the edges of the (cubic) simulation box. The prevailing choice in simulations
is periodic boundary conditions. That is, if a particle leaves the box on one side, an identical
image particle simultaneously enters the box on the opposite side. The simulation cell can thus
be considered as a section of a macroscopic system. The fact that adjacent boxes are identical
copies does not influence the features of the system provided that the box is large enough (and
if there are no complications, like long range interactions, spontaneous ordering close to a
critical point etc [105]). However, if the box size decreases, finite size effects may occur.

In recent years efforts have been made to explore finite size effects in the glassy
state [331, 332], and as a liquid is cooled toward its glass transition [208, 333–336]. The
systems studied comprise e.g. Lennard-Jones mixtures [208, 331–333], a soft sphere mixture
[334], a hard sphere mixture [337] and a model for silica [335, 336]. The simulations above
Tg demonstrate quite generally that the dynamics of a cold liquid slows down with decreasing
system size. But the extent of these finite size effects appears to depend on the nature of
the liquid. For instance, [208, 333] find that finite size effects on the structural relaxation—
characterized by the incoherent scattering function at q ≈ q∗ [333] or the diffusion coefficient
[208]—become negligible for binary LJ mixtures if the system size exceeds 65 particles. On
the other hand, finite size corrections on the relaxation of φs

q(t) can still be detected for much
larger systems—a few thousand particles—in the case of the soft sphere mixture [334] and
silica [335, 336]. This difference is not fully understood (see e.g. [333] for a comparative
discussion of the results from [333] and [334]; see [335] for a comparison of finite size effects
in strong and fragile glass formers and [336] for an explanation of the finite size effects for
φs

q(t) in strong glass formers).

5. Summary and conclusions

In this review we were concerned with computer simulations of glass-forming polymer melts
in the bulk and in a film geometry. This topic, albeit only one aspect of the research on
glass-forming systems [18], has become so broad that it appears hard to write a comprehensive
account of the many challenging questions and of the approaches applied to broach these issues
computationally. Some selection is necessary.

We employed two criteria in this selection, one regarding the simulation model, the other
regarding the temperature regime. We focused on what may arguably be considered as an
archetypal model for polymer melts [29], a bead–spring model which takes into account
only basic properties of (neutral homo)polymer chains, such as chain connectivity, excluded
volume (cf section 2). For this model we explore structural, conformational and dynamic
features in thermal equilibrium as the glass transition of the melt is approached on cooling.
Simulations of chemically realistic polymer models [32], of driven (sheared) supercooled
melts (see e.g. [72, 338, 339]) or phenomena pertaining to the glassy state, like physical
ageing [18, 25, 340], mechanical properties of (polymeric) glasses (see e.g. [331, 332, 341]),
the response of polymer glasses to strong deformations (see e.g. [26, 27]) etc are either touched
upon only briefly (realistic models) or not discussed at all.

The requirement of thermal equilibrium limits the scope of our discussion—for both the
bulk and the films—to temperatures larger than the critical glass temperature Tc of ideal mode-
coupling theory (MCT). The application of MCT to the dynamics of the cold melt in the
bulk represents a major part of this article. Here we attempted to be detailed and critical,
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assessing the strengths and weaknesses of the theory when compared to the simulation data
(cf sections 3.3.2–3.3.4).

We feel that a particular strength of the theory is that it establishes a correlation between the
structure and dynamics of a liquid. This correlation—more precisely, a distinctive dependence
of the structural relaxation on the wavelength employed to probe the dynamics—is commonly
observed in simulations of glass-forming systems, and also for our polymer model. MCT
suggests a framework for interpreting these findings by providing detailed predictions for
what to expect in the case of hard spheres. The comparison of the hard sphere results with
those obtained for the simulated system helps to understand which aspects of the relaxation
are ‘simple liquid-like’ and which are not. For our polymer model we identify—in agreement
with the hard spheres case—local spatial correlations at the scale of the wavelength 1/q∗ (the
maximum of S(q)) as the origin for the slowing down of the dynamics as the melt is cooled
toward Tc. On the other hand, density fluctuations on larger length scales (q < q∗) aggregate
contributions from the chain relaxation; these cannot be understood within a theory for simple
liquids. In this respect, a recent extension of MCT to nonentangled polymer melts [176]
might prove to be helpful. Although the potential of this approach has not been fully explored
here—section 3.3.5 only describes a first application—it might provide a clearer connection
between the liquid dynamics and the relaxation of chain conformations. Such a connection
is highly welcome. It offers the promise of obtaining a thorough understanding of the factors
that control the range of validity of the Rouse model [2]—a classical model of polymer theory
for chain transport and relaxation in nonentangled melts—and of corrections to it due to finite
chain length, polymer structure etc.

The main weakness of the ideal MCT is known. The theory predicts vitrification at Tc while
the expected divergence of the structural relaxation time is not observed in practice. Particles
do eventually escape from their cages as Tc is approached from above. In simulations these
deviations are often accompanied by a decoupling of the relaxation times on local (q ≈ q∗)
and large (q � q∗) length scales (cf section 3.3.6). This decoupling resembles the violation
of the Stokes–Einstein relation found in experiments close to Tg. A popular explanation
of this violation invokes the existence of spatially heterogeneous dynamics. This was one
incentive to look for such dynamic heterogeneities in our polymer model, but here for T > Tc

(cf section 3.4). We tackle this problem by analysing spatio-temporal correlations of highly
mobile monomers. We find that these monomers tend to cluster and to follow each other in
(short) quasi-one-dimensional paths. These spatial correlations are temporary phenomena.
They gradually develop throughout the β regime and are most prominent when the monomers
begin to leave their cages in the late β/early α regime. These correlations are interesting on
their own, putting our polymer model into perspective with simple liquids [192] or colloidal
suspensions [200, 201] where similar results were obtained. Nonetheless the analysis still begs
the question of whether these clustering phenomena hold the key to a better understanding of
the relaxation channels missing in ideal MCT. There seems to be room for further progress
here.

The second part of this review deals with the modelling of glass-forming polymer films.
Those who read this part may share with the authors the impression expressed in [225]:
boundary effects can have a crucial influence on the behaviour of the glass former. The
simulations discussed in section 4 support this view. Confinement may alter structural features,
and thereby the relaxation behaviour of the glass former—this was e.g. the case for our polymer
model (sections 4.2 and 4.3)—or confinement may only affect the dynamics if special care is
taken to avoid deviations from the bulk structure—as is the case e.g. in the work of [94] (cf
section 4.4). These two examples reveal the important and complex impact that the boundary
may exert on the properties of glass-forming liquids. We feel that theoretical approaches which
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are most likely to bring us forward should treat the interplay of boundary effects and glassy
slowing down of the dynamics on the same (microscopic) footing. Folding in boundary effects
is certainly a major challenge. We hope that simulations of ideal model systems—such as
those reported here—will be helpful for developing such theories in the future.
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Appendix A. Fitting simulation data with the asymptotic MCT formulae:
some suggestions

Tests of MCT utilizing the leading order predictions for the β relaxation (section 3.3.1) are
hampered by a drawback. The range of validity of the asymptotic formulae—that is, the
temperature and time intervals where they apply—is unknown. There is some freedom in the
choice of these intervals, and this freedom will affect the numerical values of the fit parameters
(see the discussion under the heading ‘Critique of the quantitative analysis’ in section 3.3.4). In
doing the fit one must thus strike a suitable balance between the need to choose such intervals
and the wish to obtain results free of internal inconsistencies.

Strategies for coping with this problem appear in the literature, but so scattered that it is
difficult to quickly obtain the necessary overview to guide practical applications. The present
appendix attempts to provide such guidance. It is mainly based on our own experience.
We organize our discussion around the coherent scattering function φq(t). Of course, any
other correlation function which couples to density fluctuations (e.g., the incoherent scattering
function φs

q(t)) may be utilized.
To carry out the MCT analysis we suggest proceeding in the following way:

(i) We begin with the qualitative tests discussed in sections 3.3.2 and 3.3.3:

• Test of the factorization theorem via equation (32), i.e., via

Rq(t) = φq(t) − φq(t ′)
φq(t ′′) − φq(t ′)

= G(t) − G(t ′)
G(t ′′) − G(t ′)

. (A.1)

As this space–time factorization is a unique prediction of MCT, equation (A.1) will
reveal whether the analysis of an observed two-step relaxation in terms of MCT is
justified or not.
Additionally, equation (A.1) is predicted to hold only close to Tc. This allows us to
determine the T interval, Tc � T � Tmax, where the asymptotic formulae should
work in practice—some small print should appear here; we will come back to it after
discussing the next test.
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• Test of the TTSP via equation (26), i.e., via
φq(t) = φ̃q(t/t ′

σ ) (t � tσ ). (A.2)
Here, tσ and t ′

σ are the β and α relaxation times (cf equations (22,23)).
The key feature of equation (A.2) is that the scaling time t ′

σ is independent of q . In
practical applications we should thus employ a single relaxation time to attempt the
construction of master curves for all q . The choice of this relaxation time depends on
details of the available data, mainly on the length of the simulation runs, the accuracy
of the time series at long times and the range of wavevectors studied. In our case
[64], we used the α relaxation time τq∗ determined at the maximum q∗ of S(q) via
φq∗(τq∗) = 0.1. The threshold ‘0.1’ is arbitrary, but convenient [64]: on the one hand,
it is small enough that φq(t) is well in the α regime for 0 < q � 16. On the other
hand, it is sufficiently above the noise level that the statistical accuracy of the data
remains satisfactory.
The superposition predicted by equation (A.2) will only work for T close to Tc. That
is, in the T interval identified before by the test of the space–time factorization. There
is however one reservation (the small print mentioned above). The TTSP breaks down
in the immediate vicinity of Tc and for T < Tc, while equation (A.1) might still hold
(cf figure 9, figure 11 and the discussion of section 3.3.3). So the TTSP allows us to
determine the lowest temperature Tmin for which the ideal MCT can be applied.
The TTSP provides further information: it suggests a lower bound for the
nonergodicity parameter. According to equation (29), the α master curve has the
following short time expansion:

φq(t) = f c
q − hq B

(
t/t ′

σ

)b
(tσ � t � t ′

σ ),

and so φ̃q(t/t ′
σ ) � f c

q . (B = B(λ) is a constant [145].) This implies that the fit result
for f c

q may not adopt values that cut the α master curve (see the discussion under
the heading ‘Critique of the quantitative analysis’ in section 3.3.4). Thus, the master
curve allows us to read off the lower bound f c min

q for the fit parameter f c
q in the β

analysis.

(ii) The quantitative β analysis is based on equation (25) which we write as

φq(t) = f c
q +

hfit
q

ta
σ

g(t̂)

+
hfit

q

t2a
σ

Bfit
q t̂ 2b +

hfit
q

t2a
σ

Afit
q t̂−2a, (A.3)

where hfit
q = hqta

0 , Bfit
q = ta

0 B2 Bq , Afit
q = ta

0 Aq and t̂ = t/tσ (see equations (22) and (25)).
Equation (A.3) contains six fit parameters: f c

q , hfit
q , Bfit

q , Afit
q , tσ (T ) and λ. λ fixes the

shape of g(t̂) and determines the exponents a and b via equation (24). Of these parameters
only tσ depends on T .
When adjusting equation (A.3) to the simulation data we suggest proceeding in the
following steps:

(a) As a first step, we drop the underlined term in equation (A.3). It represents a correction
to the short time behaviour of g(t̂). Two justifications can be put forward. On the one
hand, the precise determination of the short time behaviour of g(t̂)—and thus also of
the correction to it—appears to be hard from simulations. References [106, 107]
demonstrate this difficulty for simple glass-forming liquids. Structurally more
complex glass formers, such as SiO2 [174, 335], H2O [172, 342] and cis–trans 1,4-
polybutadiene [52], may exhibit a nonmonotonic t dependence at the beginning of
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the plateau region. This still compounds the difficulty of a proper determination.
On the other hand, the short time corrections are correlated with those at long times
[142, 143]:

Afit
q = 1

B2
Bfit

q + constant. (A.4)

As the dependence on q can thus be derived from the long time behaviour (for which
the fit will be more precise), the short time corrections may be added later on (if
necessary).

(b) The next step consists in utilizing equation (A.3) to determine λ. Following [178],
information from the α process is crucial to this end. Two bits will be included. (i) We
keep the term proportional to Bfit

q , i.e., the long time correction to the von Schweidler
law (equation (29)). (ii) We require the fit result for f c

q to obey f c min
q � f c

q < 1.
The actual (nonlinear) fit of the simulation data to equation (A.3) should be carried
out at Tmin and for, say, three wavevectors. We suggest working with q∗, a wavevector
q < q∗ and qmin, the wavevector corresponding to the first minimum of S(q). For q∗
the von Schweidler process is pronounced; corrections to the factorization theorem
should be small [143]. The final bit that is needed is the β scaling function g(t̂). There
are two ways to obtain it: either one calculates the full g(t̂) numerically—the program
may be requested from the authors of [141]—or one uses the asymptotic expressions
published in [145]. (See e.g. [343] and [344] respectively for applications of the latter
expressions to simulation and experimental data.)

(c) From this analysis we obtain estimates for λ and tσ (Tmin). As a cross-check and/or to
refine the fit parameters we propose repeating the last step for the incoherent scattering
function φs

q(t).
(d) The previous two steps yield f xc

q (and thereby tco), hx fit
q and Bx fit

q at the selected q
values. As a cross-check and to determine f xc

q and hx fit
q for other wavevectors we

suggest using equation (47) and (48). That is,

φx
q(tco) = f xc

q and hx fit
q = ∂tφ

x
q(t)

∂t [g(t̂)/ta
σ ]

∣∣∣∣
t=tco

. (A.5)

Equation (A.5) is supposed to hold for all q and correlators ‘x’.
The remaining parameter Bx fit

q may then be fitted by equation (A.3).
(e) The previous steps provide λ, f xc

q , hx fit
q , and Bx fit

q . These parameters are supposed to
be independent of T . Fixing them for Tmin < T � Tmax we can apply equation (A.3) to
the simulation data for φq(t) (and φs

q(t)) in the corresponding T interval to determine
tσ (T ). Equation (22) then gives the critical temperature,

t−2a
σ ∝ T − Tc (T � Tc).

(iii) Variant of the analysis. instead of fitting equation (A.3) one can also work with its long
time behaviour only—that is, with the von Schweidler law (equation (29)) and the leading
order correction to it,

φq(t) = f c
q − h̃fit

q

(
t/t ′

σ

)b
+ h̃fit

q B̃fit
q

(
t/t ′

σ

)2b
(tσ � t); (A.6)

h̃fit
q = hq B , B̃fit

q = B Bq and t ′
σ is defined in equation (23). (The same constraints,

Tmin < T � Tmax and f c min
q � f c

q < 1, apply here too.) Equation (A.6) is easier
to implement than equation (A.3)—we do not need the full g(t̂)—and might provide
results of comparable quality, particularly for systems which exhibit a nonmonotonic t
dependence at the beginning of the plateau (see the discussion above in item (a)).
While the knowledge of tco can still be used via equation (A.5) to obtain f c

q for other q

values (and other correlators), h̃fit
q has to be determined by the fit, in addition to B̃fit

q .
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(iv) To broaden the comparison with MCT we may finally confront the results of the β analysis
with those for the α process. The analysis of the α process involves two main steps. (i)
KWW fits may be carried out for various q values to test the asymptotic predictions of
equation (31). (ii) Again for various q values, the increase of the α relaxation time τq

with decreasing T may be compared to equation (27):

τq(T ) = Cq t ′
σ (T ) ∝ (T − Tc)

−γ , (A.7)

which will be valid for T > Tc and for all q .
For the α analysis two caveats must be kept in mind. (i) The KWW fits depend sensitively
on the fit interval; the stretching exponent βKWW

q has large error bars (cf section 3.3.4 and
e.g. [64] and references therein). (ii) To test equation (A.7) we can choose to fix γ from
the β analysis, thus plotting τq

−1/γ versus T , or Tc from the β analysis, thus plotting log τq

versus log(T − Tc). In contrast to equation (A.7), the fits yield results for Tc or γ that
depend on q (cf section 3.3.6, [60, 64] for our polymer model and [107, 162] for recent
discussions in the context of simple liquids).

Appendix B. Supercooled liquids and potential energy landscape: some recent results

Consider a system of N structureless, classical particles interacting with each other. The
interactions are governed by the potential energy U . U depends on the positions of the
particles, {ri}i=1,...,N ; it is a function of the coordinate x = (r1, . . . , rN ) locating the state of the
system in configuration space. The function U(x)—the potential energy landscape (PEL)—is
a complicated surface in a (3N + 1)-dimensional space. It determines the thermodynamic and
dynamic properties of the system, as the system moves through configuration space along the
trajectory x(t).

In the context of the supercooled liquids the challenge consists in understanding the
correlation between topographic features of the PEL (minima, saddle points) and the way in
which the trajectory x(t) samples the PEL at low T . This landscape-based approach to the
glass transition was advocated more than 30 years ago by Goldstein [345], was turned into a
practical simulation method by Stillinger and Weber [158, 346] and has recently found a lot of
interest due to enhanced computational facilities and new theoretical developments originating
from spin glass theory. In this appendix, we will not attempt to write a definitive account of
these recent numerical and theoretical studies—they have been the subject of comprehensive
reviews [20, 347, 348]. (For recent tests of the theoretical work see e.g. the review [34]
(simulations) or [349] (experiment).) Here we provide rather a brief introduction to the field
guided by some results that have emerged from recent simulations.

Thermodynamics and potential energy landscape. Important topographic features of the
PEL are certainly the minimum positions. The configuration xis associated with a minimum
is commonly referred to as ‘inherent structure’; its energy Eis = U(xis) as ‘inherent
structure energy’ [158]. Each inherent structure is surrounded by a ‘basin of attraction’,
operationally defined by all configurations of the simulation trajectory, which can be mapped
to the same xis via energy minimization—a bit more formally, {x(t)| min U(x) = Eis} (see
e.g. [333] for a pedagogical introduction). The assignment ‘x → xis’ naturally leads to a
decomposition of configuration space into basins of inherent structures. This decomposition
suggests approximating the free energy F(T, V , N) of the supercooled liquid as a sum of a
configurational and a vibrational part [20, 333, 350, 351]:

F(T, V , N) ≈ 〈Eis(T, V , N)〉 − T Sconf(〈Eis〉) + Fvib(〈Eis〉; T, V , N). (B.1)



R944 Topical Review

The first two terms (the ‘configurational part’) characterize the system of inherent structures:
〈Eis〉 is the average energy of the local minima sampled at temperature T and volume V . Sconf

is called the ‘configurational entropy’; it counts the number of minima with energy 〈Eis〉. The
third term, Fvib, represents the vibrational (harmonic and anharmonic) free energy of a basin
of depth 〈Eis〉; it depends on T explicitly and implicitly via 〈Eis〉.

Simulation studies of simple [20, 333, 350] and molecular [351] glass formers indicate that
this approach to the thermodynamics of supercooled liquids becomes viable below an ‘onset
temperature’ To ≈ 2Tc [352, 353]. (Tc denotes again the critical temperature of MCT.) For
Tc � T � 2Tc—the so-called ‘landscape-influenced regime’ [20]—〈Eis〉 and Sconf decrease
strongly with T .35 Parallel to that, the glass formers develop dynamic features predicted by
MCT; the two-step relaxation of density and related correlation functions clearly emerges for
Tc � T � 2Tc. This coincidence suggests searching for an interpretation of MCT from the
viewpoint of the PEL.

Relaxation and potential energy landscape. The interpretation of the dynamics requires an
analysis of the manner in which the system explores the PEL. Important topographic features
in this context are the energy barriers that the system may encounter along its path. The task
of characterizing the path and the barriers has been approached in different ways. Here we
will briefly touch on two approaches.

One way of gathering information about the energy barriers, recently pursued by Sciortino
and co-workers [354–356], is to analyse the minima of the ‘pseudopotential’ W = |∇U(x)|2.
Because configurations with W = 0 are saddle points, the minima xs of W are referred to as
‘quasisaddles’ [355]. The incentive for an analysis of W rests upon the fact that, at xs, the force
F = −∇U is small. So one can expect the dynamics to be slow. Whether it is slow should
depend on the shape of the PEL near xs. The shape can be characterized by the eigenvalues of
the Hessian matrix at xs, a negative eigenvalue corresponding to a downward curvature and,
potentially, to a diffusive direction. An important feature of the quasisaddles is thus, besides
their energy Es = U(xs), their ‘order’ ns, defined as the number of negative eigenvalues of
the Hessian (divided by 3N).

The analysis of W , performed on several glass-forming soft sphere and LJ systems, reveals
two interesting results [355, 356]. (i) It is possible to construct master curves, e.g. for ns versus
T or 〈Es〉 − 〈Eis〉 versus ns, when temperature or energy are scaled by Tc. (ii) ns decreases
with T and appears to vanish at Tc. Saddles of order zero (ns = 0) are inherent structures
of the PEL. This latter finding was interpreted as evidence for the viewpoint of MCT that Tc

marks the crossover temperature for a change in transport mechanism [23, 177]: below Tc the
relaxation is governed by thermally activated hopping processes across saddle points of the
PEL, whereas such hopping processes are subdominant for T > Tc and may be neglected for
T not too close to Tc (see the discussion at the end of section 3.3.1).

The significance of the quasisaddles and, along with that, the interpretation of the results
have been challenged by Doliwa and Heuer, on the basis of a detailed investigation of the
PEL for a binary LJ mixture [357–359]. Doliwa and Heuer propose an original method for
locating the transition states on the borders of the energy basins and argue that the quasisaddles
systematically overestimate the true energy barriers determining the diffusion of a particle
[358]. Their method offers the possibility of following closely the escape of the system

35 The analysis of [350] suggests that the configurational entropy extrapolates to 0 at a finite temperature TK. TK
may thus be identified with the ‘Kauzmann temperature’ (see e.g. [394] for a recent discussion), provided that the
extrapolation is reliable—as carefully stated in [350]. The reliability of the extrapolation has recently been challenged
by the results of new simulations, apparently achieving thermal equilibrium well below Tc via modern Monte Carlo
methods [115]. See also [111] for a critical re-evaluation of recent numerical work on the ‘entropy crisis’ in model
glass formers.
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from an inherent structure. It reveals a funnel-like superstructure of the PEL. The PEL
appears to be organized in ‘metabasins’ [158], defined as groups of adjacent minima which are
repeatedly visited before the system finally succeeds in escaping from this region of the PEL.
At temperature T , the metabasins of energy Emb are populated with probability p(Emb, T ) and
the temporary trapping of the system—the repeated visits of the same inherent structures—
in the metabasin determines the average waiting time τ (Emb, T ) before the system escapes
from the basin. The analysis of [358, 359] reveals two interesting results in the ‘landscape-
influenced’ regime (Tc � T � 2Tc). (i) The waiting time closely follows an Arrhenius
law, τ (Emb, T ) ∝ exp[E(Emb)/kBT ]. (ii) The diffusion coefficient of a particle is well
approximated by

D(T ) ∝
∫

dEmb p(Emb, T ) exp
[−E(Emb)/kBT

]
, (B.2)

suggesting that activated barrier crossings determine the diffusion dynamics up to T ≈ To =
2Tc.

Equation (B.2) is not the only relation that has been proposed as a possible link between
the topographic features of the PEL and the dynamics of supercooled liquids. Simulation
studies on a binary LJ mixture [360] and models for water [329, 361] and ortho-terphenyl
[362] suggest that the Adam–Gibbs formula (see e.g. [18, 20]),

ln D(T ) ∝ 1

T Sconf (T )
, (B.3)

provides a viable description in the supercooled state (apparently, for both T � Tc and T < Tc

[362]). A firm confirmation of equation (B.3) would imply that there is a relationship between
the depth distribution of inherent structures and the barrier heights between them. Such a
connection between thermodynamic (Sconf ) and dynamic features (barrier heights) is not a
necessity. For instance, the two contributions are well separated in equation (B.2), and this
might appear more natural (see e.g. the discussion in [363]).

A final remark. While there appears to be some consensus as regards which features of the
PEL determine the thermodynamics of (model) glass formers in the supercooled state, the
preceding discussion demonstrates that the interpretation of the dynamics is still a matter of
controversy. We feel that there are two challenges, one conceptual, the other technical.

Conceptually, the challenge consists in finding those landscape characteristics that are
responsible for the slow relaxation of collective variables, such as longitudinal and traverse
currents or density fluctuations on different length scales. Attempts to relate features of the
PEL to the real space dynamics represent promising first steps [209, 213, 329].

Technically, the simulation studies of the PEL presented are at the limit of what is currently
feasible. Nevertheless, they often only involve about 100 particles. For a particle density ρ = 1,
this implies a linear extent of the simulation box of about 5—the pair distribution function is
truncated between the second-and third-nearest neighbour shells. While arguments have been
presented that this system size suffices to approximate the macroscopic limit, at least in the
case of LJ systems for Tc � T � 2Tc [208, 333], finite size effects may be a particular hazard at
lower T or for other systems. Improved computational facilities should alleviate this problem
in the future.
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