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Abstract

We survey results of computer simulations for the structure and dynamics of
supercooled polymer melts and films. Our survey is mainly concerned with
features of a coarse grained polymer model—a bead—spring model—in the
temperature regime above the critical glass temperature 7. of the ideal mode-
coupling theory (MCT). We divide our discussion into two parts: a part devoted
to bulk properties and a part dealing with thin films. The discussion of the bulk
properties focuses on two aspects: a comparison of the simulation results with
MCT and an analysis of dynamic heterogeneities. We explain in detail how
the analyses are performed and what results may be obtained, and we critically
assess their strengths and weaknesses. In discussing the application of MCT we
also present first results of a quantitative comparison which does not rely on fits,
but exploits static input from the simulation to predict the relaxation dynamics.
The second part of this review is devoted to extensions of the simulations from
the bulk to thin films. We explore in detail the influence of the boundary
condition, imposed by smooth or rough walls, on the structure and dynamics of
the polymer melt. Geometric confinement is found to shift the glass transition
temperature T, (or T¢ in our case) relative to the bulk. We compare our and
other simulation results for the 7, shift with experimental data, briefly survey
some theoretical ideas for explaining these shifts and discuss related simulation
work on the glass transition of confined liquids. Finally, we also present some
technical details of how to perform fits to MCT and give a brief introduction to
another approach to the glass transition based on the potential energy landscape
of a liquid.
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1. Introduction

Polymer melts are bulk liquids consisting of macromolecules [1]. In the simplest case of
linear homopolymers each macromolecule contains N monomeric repeat units of the same
type, which are connected to form a chain. The chain length N may be large. A typical range
in experiments is 10° < N < 10°. This implies that the average size of a polymer, measured
e.g. by the radius of gyration R, [2, 3], varies between R, ~ 100 A and Ry ~ 1000 A. The
size of a chain thus exceeds that of a monomer (~1 A) by several orders of magnitude.
These different length scales are reflected in the particular features of a polymer melt. In the
melt the monomers pack densely, leading to an amorphous short range order on a local scale and
to an overall low compressibility of the melt. Both features are characteristic of the liquid state.
Qualitatively, the collective structure of the melt thus agrees with that of nonpolymeric liquids.
Additional features, however, occur if one considers the scale of a chain. A long polymer in a
(three-dimensional) melt is not a compact, but a self-similar object [3—5]. It possesses a fractal
‘open’ structure which allows other chains to penetrate into the volume defined by its radius of
gyration. On average, a polymer experiences +/N intermolecular contacts with other chains,
a huge number in the large N limit. This strong interpenetration of the chains has important
consequences. For instance, intrachain excluded volume interactions, which would swell the
polymer in dilute solution, are screened by neighbouring chains [2—4, 6-8]. A polymer in
a melt thus behaves on large scales as if it were a random coil, implying that its radius of
gyration scales with chain length like Ry ~ V/N. Furthermore, the interpenetration of the
chains creates a temporary network of topological constraints [2—4, 9]. These entanglements
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Figure 1. Volume per monomer v versus temperature 7 for a polymer melt which tends to
crystallize. In the high T liquid phase the chains have configurations that are random coil-like
and the structure of the melt is amorphous. The amorphous structure is preserved when the melt
is cooled rapidly enough to avoid crystallization. Then, it undergoes a glass transition at 7. For
slower cooling the melt transforms into a semicrystalline material at the crystallization temperature
Terys. Inthe semicrystalline state, sections of folded chains order in lamellar sheets that coexist with
amorphous regions. On heating (dashed grey line) the crystal melts at Ty, > Tepys. This hysteresis
is characteristic of first-order phase transitions. The volume—temperature diagram shown is a
result of molecular dynamics simulations for a model of poly(vinyl alcohol) (courtesy of H Meyer;
see [10, 11] for further details).

greatly slow down the chain dynamics and render the melt in general very viscous compared
to low molecular weight liquids.

Polymeric solids: crystallization and glass transition. Polymeric solids are either glassy
or semicrystalline (figure 1) [12]. Semicrystalline polymers contain both amorphous and
crystalline regions. The crystalline regions consist of lamellar sheets in which the polymers
are folded back and forth so that sections of chains can align parallel to each other. The sheets
twist and branch as they grow outward from a nucleus into spherulitic structures [12]. This
hierarchy of morphological features, ranging from the lamellar ordering of the chains (~10 nm)
to the macroscopic packing of the spherulites (100 um and larger), reflects the complexity of
the underlying crystallization process which is not yet fully understood [13-16].

The ability to form crystal crucially depends on the microstructure of the chains.
Only polymers with regular configurations, e.g. isotatic or syndiotatic orientations of the
sidegroups [3] or chains without sidegroups, polyethylene being the prime example, can align
parallel to each other so as to pack into crystalline lamellae. However, even in these favourable
cases full crystallization is almost never achieved (see e.g. [14]).

Due to this intrinsic difficulty of crystal formation, polymer melts are in general good
glass formers [17-19]. Either they can be readily supercooled (figure 1) or, due to the irregular
configuration of the chains, a crystalline phase does not exist at all. There are numerous
examples for the latter case. They comprise homopolymers with an atactic orientation
of (bulky) sidegroups, e.g. atactic polystyrene, or random copolymers, such as cis—trans
polybutadiene, in which monomers, having the same chemical composition, but different
microstructures (cis—trans configuration of butadiene), are randomly concatenated. These
polymeric glass formers exhibit features that are also prevalent in other (intermediate and
fragile) glass-forming liquids [18, 19]. For instance, as the melt is cooled from the liquid state
toward the glass transition temperature Ty, it displays a non-Arrhenius increase of all measured
structural relaxation times. In proportion to this huge effect on the dynamics, the amorphous
structure of the melt only changes very little on cooling. This discrepancy poses a formidable
scientific problem. Understanding its molecular origin represents an important issue in the
research on the glass transition [19-22].
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Scope of the article. The present article reviews recent simulation results for glass-forming
polymer melts. Even within this scope there are several respects in which our discussion will
be limited. We adopt the view that the glass transition is approached by slow cooling from the
liquid. ‘Slow cooling’ means that the melt is always in thermal equilibrium. This condition
restricts our attention to temperatures above the critical glass temperature 7, of mode-coupling
theory (MCT) [21-24]. Thus, we do notdiscuss interesting sub-7, phenomena, such as physical
ageing [17, 18] (see also [25] for a topical review) or the response of polymeric glasses
to external deformation fields [26, 27]. Furthermore, our survey will be mainly concerned
with molecular dynamics (MD) studies of a bead—spring model of a polymer melt. This
model—a representative of the class of coarse grained generic simulation models [28]—may be
considered as an archetypal model for polymer solutions and melts [29, 30]. Work on realistic
polymer models will only be touched upon briefly in comparison to the results presented here.
Comprehensive reports of these realistic modelling approaches may be found e.g. in [31, 32].
Finally, our discussion, which represents an update on results reviewed in [33, 34], has surely
devoted disproportionately much space to our own contributions. This is mainly because we
hope to explain them best.

Outline. 'Wehave chosen to organize our survey as follows. We begin (section 2) by compiling
some information on polymer modelling and technical aspects of the simulation. In particular,
we introduce the coarse grained model that will mainly be discussed in the next two sections:
one devoted to the features of the bulk (section 3), the other to those of thin films (section 4).

In section 3, our discussion will revolve around two aspects, a comparison of the simulation
results with MCT (section 3.3) and an analysis of dynamic heterogeneities emerging in the
cold melt above T, (section 3.4). We explain how the analyses are carried out and what results
may be obtained from them, and we assess their strengths and weaknesses as we go. Especially
for mode-coupling theory, there are some technical details of the quantitative analysis which
are not essential for the logic of the text but may be beneficial if one wants to apply the theory.
Accordingly they are addressed separately, in appendix A.

There is another approach to the properties of glass-forming liquids, based on the features
of the potential energy landscape. This approach is extensively pursued in simulation studies
at present, and we felt that it should be included somewhere in this article, although it was not
applied to our polymer model. Appendix B provides a brief introduction.

The second part of this review deals with the extension of the simulations from the bulk
to thin polymer films. Section 4 identifies and explores what appears to be an important issue
here—the influence of the boundary condition, imposed by the confining walls, on the structural
(section 4.2) and dynamic properties (section 4.3) of the melt. Geometric confinement is
generically found to shift 7 (or ;. in our case) relative to that of the bulk. We compare our
and other simulation results for the T, shift with experimental data, give a brief survey of some
recent theoretical ideas for explaining these shifts (section 4.3.2) and discuss related simulation
work on the glass transition of confined liquids (section 4.4).

Finally, section 5 provides a synopsis of the results presented.

2. Simulation of glass-forming polymers: models and computational aspects

This section aims at providing an introduction to computer simulations of glass-forming
polymer melts. Certainly, our presentation will not be exhaustive, neither as regards the
modelling of polymer melts nor as regards specific computational aspects associated with
glass-forming systems in general. There are, however, excellent reviews on these topics,
e.g.[29,35-38], as far as the modelling of polymer melts is concerned, or [39, 40] for problems
centred around the simulation of glass-forming systems.
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Figure 2. Schematic representation of different levels one may utilize to model polymers. The
quantum level takes account of the electrons to calculate the interactions between the nuclei ‘on
the go’. At present, using such an approach to simulate polymer melts is computationally too
demanding. Less demanding and currently feasible are simulations at the atomistic level [32].
Here, the electronic degrees of freedom are replaced by a force field. A force field is the total
potential energy resulting from the interactions of all atoms (‘explicit atom model’) or from the
interactions of spherical sites comprising several atoms (e.g. CHy; the ‘united atom model’). In the
middle figure, two united atoms are indicated by the shaded circles. Typically, a force field contains
contributions from bonded and nonbonded interactions. Bonded interactions comprise potentials
for the bond length (nearest neighbour), the bond angle 6 (second-nearest neighbour) and the
torsional angle ¢ (third-nearest neighbour). Between neighbours (atoms or united atoms) that are
further apart along the backbone of the chain nonbonded interactions are taken into account. For
uncharged polymers they are often modelled by a Lennard-Jones (LJ) potential. Computationally
still less demanding than atomistic models are simulations at the coarse grained level. Here, a
monomer is associated with a spherical site and the realistic potentials are replaced by simpler
ones. This simplification, if carried out systematically, can lead to coarse grained models for a
specific polymer—recent approaches have been reviewed in [35, 36, 41]. Otherwise it leads to
generic models, such as the model described in section 2.2.

2.1. Coarse graining: from atomistic to generic polymer models

In any material, the interaction potential results from the adaptation of the electronic degrees of
freedom to the positions of the nuclei. It may thus appear natural to model polymer melts via
the Car—Parrinello method [42]. This method is a molecular dynamics (MD) technique [43, 44]
which allows the electrons to adiabatically follow the motion of the nuclei. It thereby replicates
authentically the energy landscape that the nuclei feel at any instant of their motion. However,
given the current computer power this authenticity carries a price: the inclusion of the electrons
in the simulation restricts the system size to about 100 nuclei and requires a time step of
~107'7 5. As typically ~108 time steps may be performed in a long run, such an ab initio
approach could simulate a melt of 10 chains with N = 10 for about 1 ns. This time barely
suffices to equilibrate the system at high temperature in the liquid state [38, 45].

Thus, the modelling of polymer melts nowadays still necessitates simplifications. These
simplifications generally invoke some kind of coarse-graining procedure. That is, one forgoes
the explicit treatment of fast degrees of freedom and incorporates them in effective potentials.
There are several levels to this [32, 36, 41].

Atomistic models. The preceding discussion suggests that a compulsory simplification (at
present) should consist in replacing the electronic degrees of freedom by empirical potentials
for the bond lengths, the bond angles, the torsional angles and the nonbonded interactions
between distant monomers along the chain (‘quantum level — atomistic level’; see figure 2).
This step introduces a ‘force field’, i.e., the form of the potentials is postulated and the
corresponding parameters (e.g. equilibrium bond length, force constants) are determined from
quantum chemical calculations and experiments [32, 41].
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Figure 3. Simulation results for cis—trans 1,4-polybutadiene (adapted from [53], with permission).
Main panel: collective static structure factor, S(g) (see equation (11)), and single-chain structure
factor, w(q) (see equation (12)), versus the modulus of the wavevector g at T = 273 K. Two
united atom models are compared: a chemically realistic model (CRC) and the same model but
without torsional potential (FRC). The vertical arrows indicate the values of ¢ associated with the
radius of gyration Ry and with the first maximum of S(g) (‘amorphous halo’). The maximum
occurs at ¢* >~ 1.47 A=, In real space, this value would correspond to an intermonomer distance
of 4.3 A which is roughly compatible with the average Lennard-Jones diameter of the model
(o0 ~ 3.8 A). Inset: mean square displacement go (¢), averaged over all monomers, versus time for
the CRC and FRC models at 7 = 273 K. The horizontal dotted line indicates the radius of gyration
Ré = 218 A% (which is found to be the same for the two models [54]).

Throughout the past decades several such force fields have been proposed for both explicit
atom models and united atom models. An explicit atom model treats every atom present in
Nature as a separate interaction site, whereas a united atom model lumps a small number of
real atoms together into one site [32, 36, 41]. Typical united atoms are CH, CH;, and CHs.
The reduction of force centres translates into the computational advantage of allowing longer
simulation times. With a time step of ~10~'> s—compared to ~10~!7 s for the Car—Parrinello
method—a few thousand united atoms can be simulated over a time lapse of several 100 ns,
about an order of magnitude longer than for an explicit atom simulation of comparable system
size.

Both explicit atom models and united atom models have been utilized in the study of
glass-forming polymers (see e.g. [31, 46] for reviews on older work). Current examples include
polyisoprene (explicit atom model; [47, 48]), atactic polystyrene (united atom model; [49-51])
and cis—trans 1,4-polybutadiene (united and explicit atom models; [32, 52-56]). Certainly, the
ultimate objective of these modelling efforts is that the simulation results lend themselves to a
quantitative comparison with experiments. Such a comparison may, however, require a careful
fine-tuning of the force field. For the family of neutral hydrocarbon polymers the optimization
of the torsional potential appears particularly crucial. Not only the position and the relative
height of the minima, but also the barriers between them should be accurately determined,
as local relaxation processes, involving transitions between the minima, are exponentially
sensitive to them. In extreme cases, imprecise barrier heights may seriously affect the dynamics
while leaving structural features of the melt unaltered.

Such an extreme example is shown in figure 3. The figure compares simulation results for
two models of a polybutadiene melt [53, 54]: a carefully validated united atom model which
reproduces the experimentally found structure and dynamics of the melt, and the same model
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with the torsional potential switched off. Apparently, suppression of the torsional potential
has no influence on the structure, but considerably accelerates the monomer dynamics.

This example demonstrates that different potentials may lead to a realistic representation
of structural properties, but to diverging predictions for the dynamics. Such an observation is
not limited to polymers; it was also made e.g. for amorphous SiO, [40]. This suggests that the
design of a chemically realistic model, aiming at a parameter-free comparison between simula-
tion and experiment, should involve information about both structural and dynamic properties.

Generic models.  Atomistic simulations of carefully designed models are the best way to
explore the properties of specific polymers, including the glass transition. However, the strong
slowing down of the dynamics on cooling, which eventually leads to the freezing in of an
amorphous state, is observed for all glass-forming polymers, irrespective of their chemical
structure. If the focus is on these general features, it appears permissible to forego fast degrees
of freedom (bond length and bond angle vibrations, etc) in favour of a coarse grained model
(‘atomistic level — coarse grained level’; see figure 2). A special type of coarse grained
models is constituted by so-called ‘generic models’ [36]. A generic model only retains the
most basic features of polymer chains. For (uncharged) linear polymers these features are
presumed to be chain connectivity, excluded volume interactions and, possibly, monomer—
monomer attractions and/or some stiffness along the chain backbone. Various such generic
models have been studied in the literature (for reviews see [28, 38, 57]). In the following we
present one of these models, which was used in our simulations [58—73], in more detail.

2.2. The Bennemann model: a bead—spring model for glass-forming polymer melts

In 1985 [74] Grest and Kremer proposed a versatile bead—spring model for the simulation
of polymer systems. The ‘Kremer—Grest’ model has ever since been deployed to
investigate numerous problems in polymer physics, including relaxation processes in polymer
solutions [75] and melts [30, 76, 77], the behaviour of polymer brushes [78, 79] or rheological
properties of complex fluids [29], just to name a few. These diverse successful applications
prompted Bennemann ez al [58] to suggest a variant of the model for the study of glass-forming
polymer melts.

The Bennemann model. In this model, the chains contain N identical monomers of mass
m. All monomers, bonded and nonbonded ones, interact through a truncated and shifted
Lennard-Jones (LJ) potential

4 12_ 6 +C cu f < cut»
U (r) = Oe[(a/r) (0/r)°1+ C(rew) e(;sr; Feut 0

The parameter C(roy) = 127/4096 € shifts the potential to zero at the cut-off distance
Fewt = 2Fmin Where rpin = 2% is the minimum of equation (1). The choice for rgy is
motivated by the wish to work with a potential that is as short ranged as possible® while still
including the major part of the attractive van der Waals interaction. Even though attractive

3 Computational expediency suggests working with a short range potential because the number of neighbours 7;
with which a particle interacts scales with the cut-off distance as n; o< r2,, [84, 85]. So one expects a simulation
of the Kremer—Grest model, where rey = 21/°, to be about eight times faster than that of the Bennemann model
(Feut = 2 % 21/0 2 2.25). In fact, our experience confirms this expectation (the speed-up factor for the Kremer—Grest
model is rather 5 than 8). This computational advantage was presumably one of the motivations for using the Kremer—
Grest model also to study supercooled polymer melts [338]. (In this case, however, the glass transition temperature
appears to be distinctly smaller than in the Bennemann model, which outweighs the speed-up factor mentioned above.)
On the other hand, the cut-off distance of the Bennemann model is of course not necessarily the only possible choice.
The slightly larger (classical [84, 85]) value roy = 2.5 was used e.g. in [99, 121].
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interactions are not expected to appreciably affect the local structure in a dense melt*, they
may have a significant effect on thermodynamic properties. Furthermore, they are important
for simulations of e.g. the phase behaviour of polymer solutions [80, 81], thin films with a
film—air interface [82, 83] and crazing in polymer glasses [26, 27]. The idea of Bennemann
et al was to suggest a model which could be employed to explore various physical situations
without the need to be modified.

In addition to the LJ potential, nearest neighbour monomers along the chain interact
through a FENE (finitely extendible nonlinear elastic) potential®

1, r\’ 30e
Urene(r) = _EkRo ln[l — (R—O) j| Ry =150, k= ey 2)
Equation (2) diverges logarithmically if » — Ry (‘finite extensibility’) and vanishes
parabolically close to the origin (‘elastic behaviour’). So the FENE potential alone does not
prevent monomers from overlapping. Local excluded volume is imposed by the LJ interaction.
The superposition of the FENE and the LJ potentials yields a steep effective bond potential
with a minimum at r, = 0.9606 (see e.g. [71]).

Lennard-Jones units and approximate mapping to real units. The parameters of equation (1)
define the characteristic scales of the melt: € the energy scale, o the length scale and
1y = (mo?/e)'/? the timescale. In the following, we utilize LJ units. That is, € = 1,
o = l and m = 1. Furthermore, temperature is measured in units of € / kg with the Boltzmann
constant kg = 1.

Although reduced units are commonly employed in simulations and are of technical
advantage [84, 85], it might still be interesting to obtain a feeling for how they translate
into physical units. Such a mapping of the Bennemann model to real systems has recently
been carried out by Virnau et al [81, 86] and by Paul and Smith [32]. Virnau et al explored the
phase separation kinetics of a mixture of hexadecane (C;¢H34) and carbon dioxide (CO;). By
identifying the critical point of the liquid—gas transition in hexadecane with that of bead—spring
chains containing five monomers they found o ~ 4.5 x 107! m and € ~ 5.8 x 1072!]. Paul
and Smith compared the dynamics of chemically realistic models for nonentangled melts of
polyethylene and polybutadiene with that of the Bennemann model. This comparison allowed
them to convert 7i; to seconds. The result is 7;; ~ 2.1 x 10~!'s. These values for o, €
and 1y are compatible with the estimates obtained by Kremer and Grest when comparing the
dynamics of entangled bead—spring melts to those of real polymers (see table III of [74]; see
also section 4.7 of [29] for further discussion).

Choice of the chain length. In polymer glass simulations the chain length N is usually chosen
as a compromise between two opposing wishes: on the one hand, N should be sufficiently
large to separate the scales of the monomer and the chain size so that polymer-specific effects
(or at least the onset thereof) become observable. On the other hand, computational expedience
suggests working with short chains. Because the simulations aim at following the increase
of the monomeric relaxation time 7y with decreasing temperature over as many decades as
possible, slow relaxation processes, already present at high 7 due to entanglements, should

4 In glass-forming colloidal suspensions, however, attractions of quite short range and moderate-to-high strength
may influence the local packing. Depending on the external control parameters this can increase the density where
the glass transition occurs, or lead to gelation phenomena [364-366].

5 According to [74], the values given in equation (2) for Ry and k prevent the bonds from crossing each other in the
course of the simulation. This imposes topological constraints [2] which ultimately lead to reptation-like dynamics
in the limit of large chain length [74, 77].
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be avoided. Thus, the chain length should be smaller (or at least not much larger) than the
entanglement length N,. Extensive studies of the Kremer-Grest model show that N, ~ 32.
Shorter chains exhibit Rouse-like dynamics:

™ = oN™2. 3)

As the Bennemann model is expected to have a similar N, the chain length N = 10 was
proposed as a possible compromise [58]. This chain length was used in all subsequent studies
pertaining to glass-forming polymer melts [58—73].

2.3. Extending the model to thin films: smooth and rough walls

A ‘polymer film’ is a system in which a polymer melt is geometrically confined in one spatial
direction. The confinement can result from two polymer—air interfaces (‘freely standing films’),
from two inequivalent interfaces (e.g. polymer—air and polymer—substrate) or from enclosing
the melt between two substrates. It is the latter situation that we will be mainly concerned with
here.

Even though real substrates can have a complex structure, it appears natural in the spirit of
the polymer models discussed above to treat the substrate also at a generic level. One obvious
feature is its impenetrability. So a minimal model must at least respect monomer—substrate
excluded volume interactions. Further generic features could be some surface roughness and
adhesive power. On the basis of this reasoning, simulations often model the substrate as a
crystal [87, 88] made of particles that interact with each other and with the monomers through
LJ potentials. If we adopt that model, two limiting cases may be distinguished:

(i) Smooth and structureless walls. The presence of the substrate leads us naturally to
consider two directions: the direction parallel to the wall (s = (x, y)) and the z direction
perpendicular to it (figure 4). So the interaction potential between the monomers and the
substrate is in general a function Uy (r) = Uy(s, z). If our interest is restricted to the
average potential which the substrate exerts on a monomer, we may treat the wall as a
continuum and integrate over the parallel (x, y) directions and the vertical direction up to
position z. Carrying out this calculation for the LJ potential yields

Uy(z) = ew[(%)g - fw(%)3}, @)

where €, denotes the monomer—wall interaction energy and f,, is a constant. While
the second attractive term is important if one wants to study polymer adsorption [89] or
wetting phenomena [90, 91], the first term of equation (4) suffices for imposing a geometric
confinement. This is the stance we adopted in most of the simulations on supercooled
polymer films [68-71, 73]: By choosing €, = € and f,, = 0 we introduce two smooth,
structureless and completely repulsive walls in the z direction. The walls are a distance
h apart (figure 4). We refer to & as the ‘film thickness’. In equation (4), the distance
coordinate is thus given by z = |Zmonomer — Zsmooth walll With Zsmeothwant = h/2, where
Zmonomer 18 the coordinate of the monomer perpendicular to the wall.

(i) Rough and crystalline walls. Rough walls may be implemented by restoring the first
crystalline layer. To this end, we chose [72] to tether the wall atoms to the sites of a
triangular lattice with harmonic springs (the “Tomlinson model’ [92]):

Ur(r) = gkr(r —re)®,  kr = 100. ®)

6 The estimate N, & 32 results from an analysis of monomer mean square displacements [74, 77]. Another estimate
that is about twice as large may be derived from rheological data [77, 367, 368].
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Figure 4. Snapshot of a polymer film between rough walls (only 40 chains out of 200, containing
N = 10 monomers each, are shown). The walls consist of two parts: a layer of atoms tied to a
triangular lattice via equation (5) and a barrier modelled by the repulsive part of equation (4). The
barrier is indicated by solid lines on the opposite faces of the simulation box in the z direction.
In the lateral (x, y) directions, periodic boundary conditions are employed [84, 85]. The system
size in these directions is Ly = L, = 10.05, while the distance between the triangular lattice
planes is h = 20.2 The barrier walls are placed at Zgmooth wall = £(1 + /2/2). In the case of a film
confined between smooth walls the crystalline layers are absent and the barrier walls are placed at
Zsmooth wall = A /2. This figure is taken from [72].

(This figure is in colour only in the electronic version)

Here, r¢q denotes the equilibrium position of an atom on the triangular lattice and kt the
spring constant’. The wall atoms are LJ particles that interact with each other and with the
monomers. The parameters (¢ and o) for these interactions—wall-wall and monomer—
wall—are the same as in equation (1). We expect this choice to lead to a ‘stick boundary
condition’®,

7 The value kT = 100 is close to the force constant corresponding to the harmonic approximation of the LJ force in an
fce lattice. This choice was motivated by a study of the pressure tensor in simple liquids [369]. On the other hand, the
Tomlinson model (equation (5)) appears to have an unrealistic feature. It allows a wall atom to vibrate, to some extent,
independently around its equilibrium position req. For instance, an up—down motion is possible without perturbing
the neighbours. In reality, one might, however, expect a compression at some position to also cause an indentation
in the local environment. So, displacements of neighbouring particles should be correlated. These correlations may
be taken into account in the so-called Frenkel-Kontorova—Tomlinson model [92]. However, it is not clear whether
these correlations are of crucial importance or not. For instance, reasonable results for the viscous flow of a polymer
melt can be obtained both with the Tomlinson model alone [370] and with the Tomlinson model supplemented with
excluded volume interactions between the wall atoms [72].

8 This expectation is motivated by the experience we gained from nonequilibrium MD simulations of shear flow in a
polymer melt (Bennemann model) [72] and in a binary LJ mixture (Kob—Andersen mixture) [371]. In [72], partial slip
at the crystalline wall was found at the monomer density p, = 0.795 when the LJ parameters of the monomer—wall
interaction were the same as in the bulk (i.e., oy = 1 and €y = 1). To realize a ‘stick boundary condition’ at
pm = 0.795 we took oy ~ 0.89 and €y = 2. AS Oy < 0 and €y > €, the monomers can approach the wall
more closely than they could approach each other and they are attracted by the wall more strongly than they would
attract each other in the bulk. The combination of the two effects enhances the ability of the polymer melt to adapt
to the wall structure, and this leads to the ‘stick boundary condition’ [327, 370] (see also [93] for further details). A
similar adaptation to the wall structure should also be attainable for oy, = 1 and €y = 1 when the monomer density
is high (i.e., pm = 1). This is the case for the simulations discussed in section 4.3.3.

9 The simulation box for this (large) film thickness is not symmetric; we have 7 /L, =~ 2. We explored the influence
of this asymmetry on the features of the films and ascertained that it is negligible—for both static and dynamic
properties—if i1/ L, is not much larger than 2 [93]. Otherwise, there may be important finite size effects. For smooth
walls we found that the dynamics is accelerated in smaller systems, that is, in systems with /L, >> 2. This result is
contrary to what has been observed in bulk simulations of e.g. LJ mixtures [208, 333], soft sphere mixtures [334] and
a model of silica [335, 336]. In the bulk, the dynamics (in the supercooled state) slows down with decreasing system
size. Certainly, more work has to be done to understand these asymmetry and finite size effects better.
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A monomer interacts not only with the first crystalline layer, but also with all deeper
layers of the wall. We represent this interaction with the repulsive part of equation (4). In
equation (4), the distance coordinate is now given by z = |Zmonomer — Zsmooth wall|- Here,
Zsmoothwall = (1 +7/2); h denotes the distance between the crystalline layers on the left
and right sides of the system. The presence of this smooth wall behind the crystalline layer
has the extra benefit of supplying a barrier that renders the wall impenetrable (see [72, 93]
for further discussion).

Smooth or rough walls, of the types we have just discussed, are commonly employed in
simulations of confined liquids. These walls affect the local structure of the liquid in their
vicinity (cf section 4.2.1 and the end of section 4.3.3). If these perturbations should be
avoided, at least to a large extent, one has to adapt the structure of the walls to that of the
bulk liquid. A cunning way of tackling this problem consists in ‘building’ the walls from bulk
simulations [94]: first, a bulk liquid is equilibrated at a specific thermodynamic state point;
then, ‘amorphous’ walls are introduced by ‘freezing’ all particles outside of a volume of a given
geometry. Here, we are in principle at liberty to choose whatever geometry we like—spherical,
cylindrical, film etc. For simple liquids this procedure has an additional advantage. Since the
walls are inscribed in a previously equilibrated system, no further equilibration is needed after
their introduction [94]. For polymer melts, however, the situation can be more complicated,
due to chain connectivity. When freezing a portion of the melt we cannot prevent some chains
from participating in both the wall and fluid parts of the system. If a clear separation of the
two parts is desired, these chains must be ‘removed’; and this will in general require further
equilibration.

To construct such amorphous walls for polymer films we proceeded in the following way:

(iii) Rough and amorphous walls. We begin by generating an equilibrated configuration of

the bulk polymer melt at the desired thermodynamic state point. Then, we freeze all
monomers in two slices each having a thickness of three monomer diameters, one slice
at the edge of the simulation box and the other in the middle of the box. This choice
appears appropriate if one wants to construct walls whose structures are independent of
each other (if we utilized for the second wall e.g. the opposite edge of the simulation
box, a correlation between the walls would exist due to the periodic boundary conditions).
After this assignment of monomers to the walls there will be chains that have monomers
inside and outside of the slices; we now remove all monomers outside of the slices.
This provides us with two amorphous walls which are then inserted in place of the two
smooth walls—i.e., at +/h/2—in a previously equilibrated polymer film being confined
by the structureless walls described in point (i). (Additionally, as for the crystalline walls,
a smooth barrier wall is inserted at zgmoothwat = £(3 + £/2).) Finally, the resulting
configuration is equilibrated.
One may think (or hope) that these amorphous walls would allow one to avoid the above-
mentioned structural changes due to confinement. Unfortunately, the present procedure
does not fully accomplish this goal (as we will see at the end of section 4.3.3). For example,
density oscillations are still observed; their amplitude, however, is much weaker than that
found near the crystalline walls.

2.4. Remarks on the simulation methodology

Imposing constant temperature and pressure. ~ Molecular dynamics (MD) simulations
constitute a numerical scheme which integrates the classical equations of motion associated
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with a many-body potential. Therefore, the natural thermodynamic ensemble of MD is the
microcanonical NV E ensemble. (Here, N denotes the total number of particles, V the
volume of the system and E its total energy.) In many situations, it is however desirable
to switch to another ensemble. For instance, experiments are typically carried out at constant
temperature 7" and constant pressure p. This implies that the equations of motion must be
modified to allow for fluctuations of both £ and V in response to the fixed temperature and
pressure.

Several efficient techniques have been developed to achieve this [84, 85]. The work
of [58-73] on which we will mainly focus in the following utilizes the Nosé—Hoover
thermostat [85, 95] and the Andersen—Hoover barostat [96, 97] (see [58, 65, 93] for more
details). Numerical evidence obtained from the Bennemann model in the bulk [58] and in thin
films [70] as well as theoretical arguments [98] demonstrate that simulations in the canonical
NVT ensemble using the Nosé—Hoover thermostat replicate the classical microcanonical
dynamics provided that the system size is large enough (total number of monomers larger than
a few hundred). By contrast, addition of the Andersen—Hoover barostat seems to engender
large volume fluctuations, particularly at low 7 [65] and for small film thicknesses [70], which
strongly perturb the relaxation dynamics of the melt. Therefore, the MD simulations were
performed in two steps: in a first step, the average volume corresponding to a prescribed
external pressure p (mainly p = 1) is determined; the second step fixes this volume and
continues the simulation in the canonical ensemble using the Nosé—Hoover thermostat only.
A similar procedure was also chosen in the recent work by Barbieri et al [99].

There is one further technical point about constant-pressure simulations which we want
to address now [68, 69]. In the bulk, the pressure is a scalar. In an inhomogeneous system,
however, it depends on the spatial direction and the position = where it is determined. Quite
generally, the pressure is thus a tensor function P(r) [100-102]. For a film in equilibrium we
can further specify this function. Exploiting the property that the film is isotropic in the lateral
x and y directions and using the condition of mechanical stability for a fluid at equilibrium,
one finds that only the diagonal elements of P are nonzero and given by [68, 100, 101]

Py (2) = Pyy(2) = Pr(2) and P..(z) = Py = constant. (6)

The fact that the pressure profile is constant across the film suggests a simulation method
which equates Py to an imposed external pressure Pyexe = p. This mimics experiments
on thin films which are usually carried out at constant normal pressure. If Py is fixed,
the thermodynamically conjugate variable, the film thickness #, should fluctuate. However,
experiments also reveal that the (average) film thickness increases by only a few per cent on
heating the film above its glass transition temperature [103, 104]. As our interest is mainly in
the behaviour of our model at low 7', this experimental finding suggests fixing both Py and
h in the simulation. Contrary to the bulk case, such a constraint can be realized for the film.
Imposing the film thickness still allows the surface area A of the system to vary, and so the
volume V = hA is a fluctuating quantity. Details on how to implement this algorithm may be
found in [69].

Molecular dynamics versus Monte Carlo. In the framework of computer simulations it
appears natural to address dynamical problems via MD techniques. However, if we are
interested in equilibrating long chain glass-forming polymer melts at low 7, MD does not
necessarily lend itself to addressing this problem efficiently. The realistic MD dynamics
carries the price that the equilibration time can exceed the maximum time of a few hundred
nanoseconds that one is currently able to simulate.
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At that point, one might envisage resorting to Monte Carlo (MC) techniques [105]. The
strategic advantage offered by this method is the range of ways in which MC moves may be
designed to explore configuration space. The hope is to find an algorithm that, freed of the
need to capture the real dynamics, efficiently decorrelates the configurations of glass-forming
polymer melts at low 7T'.

This demand on the algorithm appears to exclude as a possible candidate the simplest
MC technique, the application of local MC moves. A local MC move consists in selecting a
monomer at random and in attempting to displace it by a small amount in a randomly chosen
direction [28]. Not only should the local character of coordinate updating share the essential
problematic features of the (local) MD dynamics at low 7', but also one may expect that
local MC moves will yield an unfavourably large prefactor for the relaxation time due to their
stochastic character. This conjecture is based on an observation made by Gleim et al [106].
Gleim et al compared the relaxation dynamics of a glass-forming binary mixture simulated,
on the one hand, by MD and, on the other hand, by a stochastic (Brownian) dynamics (which
is in some respects similar to MC). They demonstrated that, although the structural relaxations
at long times are the same for the two methods, MD is roughly an order of magnitude faster
than the stochastic dynamics. These findings are supported by the recent work of Voigtmann
et al [107].

However, MC moves need not be local. They can be tailored to alter large portions of a
chain. A prominent example of such nonlocal moves is the configurational bias Monte Carlo
(CBMC) technique [28, 85]. Application of this technique to dense polymer systems in the
canonical ensemble usually involves an attempt to remove a portion of a chain starting from
one of its monomers that is randomly chosen, and to regrow the removed portion subject to
the constraints imposed by the local potential energy. If successful, this should imply a large
modification of the chain configuration, thereby promising efficient equilibration. However,
Bennemann ef al found that even in the limit where only the end is reconstructed (‘smart
reptation’), CBMC is inferior to ordinary MD [58]. In a dense melt, the probability of inserting
amonomer becomes vanishingly small everywhere except at the position where it was removed.
So, the old configuration of the chain is just restored. This trapping of the chain makes the
relaxation become very slow.

Thus, successful nonlocal chain updates in dense systems should involve moves that do
not require empty space. Promising candidates are double-bridging algorithms which were
successfully employed in simulations of polyethylene chains [108, 109], of the Kremer—Grest
model [110] and of a lattice model, the bond fluctuation model [28]. The basic idea of
the algorithm is to find pairs of neighbouring chains which one can decompose into two
halves and reconnect in a way that preserves the monodispersity of the polymers. Such a
connectivity-altering move drastically modifies the conformation of the two chains involved
and thus strongly reduces the dynamic slowing down related to chain length. However, if we
attempt to repeat this move over and over again on the melt configuration we started with, a
successful double-bridging event is likely to annihilate one of its predecessors by performing
the transition between two chains in the reverse direction. To avoid this inefficiency the
nonlocal chain updating should be complemented by a move which efficiently mixes up the
local structure of the melt. At low T, efficient relaxation of the liquid structure calls for a
method which alleviates the glassy slowing down in general. Thus, any algorithm achieving
this aim in nonpolymeric liquids should also accelerate the equilibration of glassy polymer
melts, provided that it can be generalized to respect chain connectivity. At present, no technique
has been established to solve this problem (see [111] for a topical review). However, possible
candidates appear to be ‘parallel tempering’ [112, 113] (see however [114]) or a recently
proposed variant of “Wang-Landau sampling’ [115].
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3. Structure and structural relaxation in the bulk

3.1. Vitrification versus crystallization

The Bennemann model (see section 2.2) implements two features which effectively eliminate
the risk of crystallization: first, the bond and the LJ potentials introduce two mutually
incompatible length scales, r, 7# rmin (equations (1) and (2)). This implies that the bond
potential locally distorts possible crystalline arrangements of the monomers (fcc or bec),
which the LJ potential alone would impose (see figure 2). Second, the chains are very flexible.
Backfolding of adjacent bonds is only suppressed by the repulsive part of the LJ potential, and
not by some additional potential for the bond angle.

The latter feature is indeed crucial. If the model were supplemented by a bending potential
favouring large bond angles, crystallization on cooling from the melt would occur, despite the
incompatibility of 7, and rni,. This was demonstrated by extensive MD simulations of a
semiflexible bead—spring model [10, 11, 116]. These studies show that short chains (with
e.g. N = 10) form extended-chain crystals in which the chains align parallel to each other.

We can set up such a crystalline state also for the Bennemann model [65]. A configuration
in which all chains are perfectly stretched out along the z direction and the monomers are placed
on a tetragonal Bravais lattice corresponds to a high density state that may be further optimized
by energy minimization. As the resulting structure has almost identical linear dimensions in
all three spatial directions, a cubic simulation cell was chosen to explore the melting of this
‘perfect’ crystal [65]. The study of [65] gives a melting temperature of 7y, &~ 0.76. The results
should be treated with care due to the constraints imposed by the periodic boundary conditions
and by the cubic shape of the (small) system. On the basis of the experience gained from
the above-mentioned semiflexible bead—spring model one estimates that such a procedure
may overrate Ty, considerably [117]. Very roughly we expect 0.65 < T, < 0.76. In the
following, we will be concerned with the temperature interval 0.45 < T < 1. In this interval,
no crystallization was observed upon cooling the melt quasistatically from high 7' toward the
critical temperature T, of mode-coupling theory (T, =~ 0.45; see sections 3.2 and 3.3). Thus,
the Bennemann model is well suited for exploring the properties of an amorphous polymer
melt in the supercooled state.

Remark on the term ‘supercooled state’.  Within the framework of first-order phase transitions
a ‘supercooled state’ is defined as the region between the binodal and the spinodal lines in
the phase diagram. There, the system is in ‘metastable equilibrium’: it is in a long lived
state protected by a free energy barrier against transformation into the ordered phase. For the
Bennemann model this barrier is essentially infinite. The model preserves a fully equilibrated
amorphous structure on cooling through the region of the putative melting temperature. It
shares this property with real polymeric glass formers, such as atactic polymers, and with other
computational models for simple glass formers'?. These examples suggest that metastability
with respect to a crystalline phase is not a conditio sine qua non for the emergence of glassy

10 Different choices as regards avoiding crystallization in simple fluids have been deployed. A commonly used
approach involves binary mixtures. Here, an extensively studied system is the binary mixture of Lennard-Jones
particles introduced by Kob and Andersen [155, 168]. In this system, crystallization is kinetically strongly suppressed
by a careful choice of the LJ parameters. However, a crystalline ground state has recently been discovered [372].
An alternative to using binary mixtures is using monatomic systems with specifically tailored interactions. Examples
include the Dzugutov model [373, 374], a single-component simple liquid with an interaction potential preventing
crystallization via the formation of local icosahedral structures, and Lennard-Jones systems supplemented with
a perturbation that depends on the static structure factor [354, 375], and polydisperse hard sphere-like systems
[107, 157, 219].
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behaviour, and the classical definition of a ‘supercooled state’ should not be applied literally.
In our context, we refer to the melt as ‘supercooled’ if the temperature is so low that the slow
relaxation processes which ultimately lead to the glass transition of the melt can be observed
(see also [23, 40] for further discussion of this point). For the Bennemann model this implies
T < 0.7~ Ty, (see e.g. figure 8 in section 3.3). Note, however, that there are systems, such
as amorphous silica [118], in which the slow relaxation characteristic of the supercooled state
is already fully developed above Ty, (in particular, 7. > Ty, for silica).

3.2. Static properties: structure factors and PRISM theory

In the supercooled state the monomer number density p, of the melt varies between
(T = 0.7) = 091 and pn (T = 0.46) = 1.04 [58]. A density of order 1 implies that
there is no free space for motion. This implies that, if all except one of the monomers were
frozen, that monomer could only vibrate around its initial position. Any displacement over
larger distances thus requires cooperative rearrangements of many monomers, that is, spatio-
temporal fluctuations of the density about the average value p,,. These dynamic features will
be addressed in section 3.3. Here, we want to focus on their static counterparts.

Structure factors of the melt and the chains. Density fluctuations for the wavevector g can be
measured using static structure factors [119]. For a polymeric liquid it is natural to distinguish
between the structure factor of a chain and that of the melt.

To introduce these quantities we consider a system containing » monodisperse chains of
length N in a volume V. The chain density p and the monomer density pp, are then given by

_n _nN )
P=y P =
Now let S,,(q) denote the collective static structure factor of two monomers a and b
(a,b=1,...,N). We write S;,(g) as a sum of an intrachain and an interchain part:
Sab(q) = Wap(q) + phan(q) (g = lgb). (®)
The intrachain part is given by
1/ . u
Wap(q) = —< > expl—ig - (rf — r?)]>, ©)
A
and the interchain part by
1/ .
pha(q) = ;( > expl—ig- (rf — rj?)]>. (10)

i#]
In these equations 7{ is the position of the ath monomer in the ith chain. When averaging the
site-resolved quantities w,;(q) and h,p,(g) over all monomer pairs (a, b) we obtain the static
structure factor of the melt

1 N
S(@) = D Sa(@) =w(g) + pmh(g) (11)
a,b=1
with
1 g .
wg) =5 Y walg)  and h(g) =5 > ha(q). (12)
a,b=1 a,b=1

Here, w(g) is static structure factor of a chain and h(q) the Fourier transform of the
intermolecular pair correlation function [119].
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Figure 5. Main figure: static structure factor S(g) of the melt (equation (11)) and intrachain
structure factor w(q) (equations (12) and (9)) versus the modulus of the wavevector g for the
Bennemann model (section 2.2). S(q) is shown for three different temperatures as indicated. Since
w(q) is (almost) independent of 7, it is depicted only for 7 = 0.46 (dashed line). The arrows
indicate the value of ¢ corresponding to the radius of gyration (R = 1.45) and the position of
the amorphous halo, ¢*, at T = 1. ¢* slightly increases on cooling: ¢*(7 = 1) >~ 6.9 and
q*(T = 0.46) >~ 7.15. Inreal space, ¢* thus corresponds to a distance of the order of the monomer
diameter, in qualitative agreement with the behaviour of PB (cf figure 3). Inset: amplitude of the
amorphous halo S(¢*) versus 7. The dashed horizontal line at 3.54 indicates the Hansen—Verlet
freezing criterion for the glass transition of hard spheres [120]. (S(¢*) and ¢* are expected to
increase slightly with chain length N; see e.g. [121].) This figure is adapted from [67].

Simulation results for S(¢) and w(q) obtained from a chemically realistic model of cis—
trans 1,4-polybutadiene (PB) at T = 273 K (7. ~ 216 K [122, 123]) have already been shown
in figure 3. Figure 5 presents the counterpart for the Bennemann model. Here, the temperature
interval extends from the high 7' ‘normal’ liquid state of the melt (7 = 1) to temperatures
in the supercooled state slightly above the critical temperature 7. of mode-coupling theory
(T =~ 0.45; section 3.3). As also found for PB [53], we observe that the dependence of w(q)
on T is negligible. This demonstrates that the chains preserve a random coil-like conformation
upon cooling. There is no discernible trend of incipient crystallization. The same applies to the
collective structure factor. Although S(g) changes with temperature, the qualitative signature
expected for a disordered, dense system manifests itself in the wavevector dependence of S(g).
The structure factor is small at low g, reflecting the small compressibility of the melt'!. Then,
it increases with increasing g toward a maximum, the so-called ‘first sharp diffraction peak’ or
‘amorphous halo’, before it converges to 1 in an oscillatory manner as g — oo. Compared to the
PB melt (cf figure 3), the Bennemann model exhibits similarities and differences. In addition
to the local intrachain structure being of course different, there are qualitative disparities
as regards the importance of the intrachain and interchain contributions to S(g) beyond the
amorphous halo. For PB, like other polymers (see e.g. [124]) and low molecular weight glass
formers (see e.g. [125, 126]), the structure factor is almost entirely intramolecular, whereas
both intrachain and interchain parts clearly contribute to S(g) for the Bennemann model. On

W Erom S(¢g — 0) = kgTpmkr, We can estimate the isothermal compressibility (k7) relative to the ideal gas
(1/kpTpm). For the Bennemann model we find kg 7 pmir ~ 0.02 in the supercooled state. This value is similar to
what would be obtained for low molecular weight glass formers [376]. For polymer melts, however, one typically
finds kg Tpmkr ~ 0.1 [377].
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the other hand, the Bennemann model and the chemically realistic model for PB agree with
each other in that w(q) is essentially independent of 7. Thus, modifications of S(g) with
decreasing temperature must be caused by changes in the intermolecular packing. We find
for the Bennemann model, and we expect for PB, that the position ¢* of the amorphous halo
and its amplitude S(g*) grow on cooling as a consequence of the increase of density and the
attendant tighter packing of the monomers on a local scale.

We may interpret this observation in terms of an empirical freezing criterion, the Hansen—
Verlet criterion [127]. According to this criterion a liquid solidifies as soon as S(g*) surmounts
a critical value. For crystallization this threshold is S(g*) ~ 2.85.!2 To our knowledge, no
threshold value has yet been established for the glass transition. Guidance can be obtained
from hard sphere systems—an appropriate model for some colloidal suspensions [128-130]—
in which a glass transition occurs for volume fractions ¢ larger than a critical value ¢.. Within
the framework of ideal mode-coupling theory (MCT) the glass transition of hard spheres is
related to local packing constraints which become so strong at ¢, that the system freezes [131].
At ¢ MCT predicts S(g*) ~ 3.54 [120].

We can compare this prediction with our simulation results. The inset of figure 5 shows
that it is close to the value found for S(¢*) at T = 0.46. This temperature in turn lies slightly
above the critical temperature 7, ~ 0.45, deduced from an extensive analysis of the dynamics
of the Bennemann model (cf[58-61, 63, 64] and section 3.3). The close agreement between the
hard sphere results and our simulation results suggests that the criterion S(g¢*) &~ 3.54 may be
employed to approximately locate T¢, at least in systems in which the glass transition is driven
by packing constraints resulting from the repulsive interactions between the particles [120].

Site-resolved structure factors: comparison with PRISM theory. The ‘polymer reference
interaction site model” (PRISM) has been proposed as a liquid state approach to the equilibrium
properties of polymeric systems [ 124, 132]. The key idea of the theory is to subdivide a polymer
into spherical interaction sites [133]. The sites need not coincide with the monomers of a chain.
The handling of most real polymers requires one to identify an interaction site with a subgroup
of amonomer (see e.g. [ 134, 135]). For bead—spring-like models, however, such complications
do not arise [136—138]. Thus, we use ‘site’ as a synonym for ‘monomer’ in the following and
we enumerate the sites froma = 1to N.

Starting from the decomposition of the chains into interaction sites, PRISM theory then
establishes an approximate relation between the intrachain and interchain contributions to
Sa»(q) via a generalized site—site Ornstein—Zernike equation [119, 133]

N
hab(@) =Y War(@)Cxy (@) [wyn (@) + phyi(q)]. (13)
x,y=I

Here, w,,(gq) and h,;(q) are defined in equations (9) and (10), p = n/V is the chain density
and c,;(¢q) denotes the direct correlation function for the sites a and b. Qualitatively, we may
interpret c,;(q) as the effective pair potential that two monomer densities, located on different
chains, experience in the melt [124]. The direct correlation function can be expressed in terms
of wy,(q) and S,;(q) by solving equation (13) for ¢, (g). This gives

pear(@) = [wz (@) = S5 (@] (@ b=1,....N), (14)
where Xa_b1 (q) represents the (a, b) element of the inverse of the matrix X(g).

12 For two-dimensional [378] and three-dimensional [379] colloidal suspensions in thermal equilibrium different
phenomenological freezing criteria were compared and shown to yield identical results. Reference [380] extends
these studies to a nonequilibrium situation. Under the influence of an external oscillatory field the freezing criteria
hold as well, provided that the system is not too far from equilibrium.
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The Ornstein—Zernike equation is a computationally demanding problem; it is of order N2.
The number of equations quickly becomes prohibitively large, as the chain length increases.
Simplifications are thus necessary in the large N limit. However, just in this limit one would
expect correlations between different chains to be only weakly affected by the presence of
chain ends. This suggests taking all interaction sites as equivalent. This ‘equivalent-site
approximation’ is usually made for the direct correlation function. That is,

cav(q) = c(q). 5)

The approximation does not entail that the site dependence of the intermolecular correlations
also vanishes. This can be made explicit by the following argument: we insert equation (15)
into equation (13) and utilize the definition of /(g) (equation (12)) to obtain the site-averaged
Ornstein—Zernike equation

h(g) = w(q) c(@) [w(@) + pmh()]- (16)

This result and equation (15) can then be re-inserted into equation (13), allowing us to write
the site—site structure factor S,,(gq) as

Sar(@) = wan(q) + phap(q)  (see equation (8))
h(@) [+ =
= wap(Q) + p——5 | Y war(@) || D wiy(@) |- (17)
U)(q) x=1 y=I

Thus, PRISM theory predicts that the site dependence of intermolecular correlations stems
entirely from the intrachain structure.

If the chain length is small, it is not clear whether equations (15) and (17) apply. Figure 6
tests the validity of the equivalent-site approximation for the Bennemann model with N = 10.
We determined the site dependent direct correlation functions c,,(g) via matrix inversion of
Sa»(q) and w,p(g) according to equation (14). The site-averaged direct correlation function
was calculated from the simulation results for w(g) and S(g) using

1

1
. _ _ ; 18
Pmc(q) v 5@ (18)

this relation follows from equations (11) and (16). The comparison of ¢, (g) and c(q) reveals
that the equivalent-site approximation works well, even for decamers, unless c,;(¢q) includes
achain end (¢ = 1 or N). Then, deviations occur close to ¢g* and for ¢ < 5. Nonetheless, the
overall agreement between c,,(g) and c(g) is good, so we can use equation (15) to interpret
the intermolecular site—site correlations of our model.

This is done in figure 7. The figure compares simulation results for S,,(g) to the
predictions of PRISM theory. We find that S,,(g) is well reproduced by equation (17). This
demonstrates that the structural properties of the Bennemann model, even subtle monomer—
monomer correlations—as well as correlations between the monomers and the centre of mass
of a chain [67]—may be calculated from the average interchain direct correlation function
and the fully site dependent intrachain structure factors, both of which are determined in the
simulation.

3.3. Structural relaxation: comparison with mode-coupling theory

The previous section revealed that the structure of the polymer melt changes smoothly
on cooling; in particular, it remains amorphous. The decrease of temperature alters the
intermolecular structure—the packing becomes tighter—but has essentially no effect on the
intrachain structure (cf figure 5). This state of affairs becomes very different if we turn to the
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Figure 6. Test of the equivalent-site approximation (equation (15)) for the Bennemann model at
T = 0.47. The chain length is N = 10. The site-averaged direct correlation function (solid line) is
compared to various site dependent direct correlation functions ¢4, (g). The dashed line represents
the end—end correlation c¢11(g), the dotted grey lines the autocorrelation between the monomers
a=2,...,N/2,ie. c2(q), c33(q), ca4(q), cs5(q). The inset magnifies the behaviour close to

¢*. This figure is taken from [67].
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Figure 7. Comparison of the sitesite static structure factor S, (¢) determined from the simulation
at 7 = 0.47 (circles) and from PRISM theory (solid lines; equation (17)). The simulation results
are obtained from the Bennemann model with N = 10. The end—end structure factor Sy;(g) is

shifted vertically for clarity.

dynamic generalizations of the static structure factors. Both the relaxation of the chain and
that of the melt undergo a strong slowing down in the same temperature interval where only
weak changes of the structure occur [59, 63, 64].

As an example, we consider the coherent intermediate scattering function ¢, (). This
function is defined by

M

1 U .
g (1) = m<2 D expl—ig - [ri(1) — 7, (0>]}>,

i=1 j=1

(19)
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Figure 8. Coherent intermediate scattering function ¢, (¢) versus time ¢ at ¢ = 6.9 (~ ¢* =
maximum of S(g); see figure 5). Different temperatures are shown. From left to right: 7 = 0.7,
0.65, 0.6, 0.55,0.52,0.5,0.48, 0.47, 0.46 (T, ~ 0.45). For T = 0.7 and 0.46 the « relaxation time
74, defined by the condition ¢, (t,;) = 0.1, is indicated (‘W’). For T = 0.46 the (approximate) time
intervals where the MCT g and « processes occur are shown. This figure is adapted from [63, 64].

where ; (¢) denotes the position of the ith monomer in the melt at time ¢ and the melt contains
M (=nN) monomers in total. Qualitatively, ¢, () may be interpreted as the overlap, measured
on the scale of the wavelength 1/¢g, between the initial configuration of the melt and its
configuration at time ¢, both of which are fully specified by the set of monomer positions
{r;(¢)}. Equation (19) shows that the overlap is normalized at # = 0 and decays to 0 in the long
time limit provided that the temperature is so high that the configurations can fully decorrelate.
A possible means to quantify this loss of memory of the initial state is to introduce a relaxation
time, the ‘o relaxation time’ 7, through the condition that ¢, (7,) has decayed to some small
value. Typically, we choose ¢, (z,) = 0.1 [64].

Figure 8 depicts the time dependence of ¢, (t) for ¢ >~ ¢*, as the melt is cooled from
T = 0.7 to 0.46. In this temperature interval, the o relaxation time increases by more than
two orders of magnitude. This disproportionately large change of the dynamics compared to
the moderate variation of the structure is an indication for the onset of glass-like behaviour
in the Bennemann model. Figure 8 points to a possible origin of the retarded dynamics.
With decreasing temperature an intermediate time window emerges, where the relaxation is
protracted. This window increases in size on cooling, thus shifting the ultimate decay of ¢, (7),
the so-called ‘o relaxation’, to longer times.

Such a two-step relaxation of ¢, (¢) is a chief prediction of the mode-coupling theory
(MCT) for the structural glass transition [21-24]. The qualitative agreement between the
theoretical prediction and the simulation results suggests performing a more detailed compar-
ison. However, since not every two-step relaxation need necessarily be related to the physics
described by MCT, we split this comparison into two parts. We first test some qualitative
predictions which will provide evidence that an application of MCT to our simulation data
might be fruitful. Only then do we carry out the quantitative analysis. To prepare for this
comparison we begin by compiling some theoretical background in the next section.

3.3.1. Ideal MCT: leading order results and corrections. Two versions of mode-coupling
theory, known as ‘ideal MCT’ [23, 24, 139] and ‘extended MCT’ [23, 24, 139-141], have
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been developed. The above-mentioned comparison with the simulation data will exclusively
explore the applicability of the ideal MCT. So we focus on this version in the following and
touch on the extended theory only briefly when discussing the range of validity of the ideal
MCT. Our presentation mainly follows references [142, 143].

The ideal MCT proposes an approximate equation of motion for the collective density
fluctuations ¢, (¢) at wavevector q. This equation couples the dynamics of ¢, (¢) (‘mode ¢’) to
that of all products ¢ ()¢, (), obeying k+p = g (whence the name ‘mode-coupling theory’).
The coupling coefficients are completely determined by the static structure of the glass former,
e.g. by S(g) and c(q). These equilibrium quantities depend on an external control parameter,
for instance on T if the pressure or density is fixed. As 7 decreases, the coupling coefficients
become larger, leading to a singular behaviour of ¢,(7) at a critical temperature 7.. More
precisely, the mathematical analysis of the mode-coupling equations reveals that the long time
limit of ¢, (¢) qualitatively changes at T:

! 0 forT > T, 0
MG D=1 1) forT < T 0
For T > T, density fluctuations relax completely. This implies that the system eventually
loses the memory of its initial state, a characteristic feature of the liquid state. By contrast,
density fluctuations cannot fully decay in an amorphous solid: a particle rattles around its initial
position without being able to leave the ‘cage’ built up by its nearest neighbours. Therefore,
a finite fraction of ¢,(¢), 0 < f, < 1, survives in the long time limit. The value of f, serves
as a measure for the ‘solidity” of the amorphous solid on length scale 1/q. f; is termed the
‘nonergodicity parameter’ because the ‘ideal glass phase’ below T, is ‘nonergodic’ (in the
sense of [144]).
The discovery of 7. in the solution of the MCT equations allows one to introduce the
‘separation parameter o,

T.—T
T.
which s utilized as a small parameter to derive asymptotic expansions around 7;. The following
equations are predictions for small |o|.

The separation parameter determines two relevant timescales of the ideal MCT: the 8
relaxation time ¢,

o=C

(C = system dependent constant), (21)

To

to = 17 (0 < a < 0.3953), (22)
o a

and the o relaxation time 7/ (valid for T > T.),
t 1 1
f; — _07 Yy =—+—
lo|Y 2a  2b
Here, #p denotes a microscopic timescale and b is called the ‘von Schweidler exponent’
(0 < b < 1). The exponents a and b are not independent of each other. They are related by
the ‘exponent parameter A’:
_ra- a)? _ra +b)?
T I'(1—2a) T(1+2b)
The exponent parameter does not depend on 7. It is determined by the equilibrium properties
of the glass former at 7.

MCT predicts that ¢, (1)—and in fact all correlation functions whose temporal evolution
is coupled to that of ¢, (¢)—should relax in two steps if 7 — 7. . In the first step, ¢, (¢)

(y > 1.765). (23)

(1/2<x < 1). (24)
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approaches a plateau value, the so-called critical nonergodicity parameter f;° (=f,(7c)), and
in the second step, it relaxes away from f; toward zero. MCT refers to the intermediate time
window encompassing the plateau as the ‘S process’. It precedes and overlaps in its late time
part with the « relaxation (cf figure 8). In the following, we will present some MCT predictions
for both relaxation processes.

Predictions for the  regime. Mathematically, the 8 regime is defined as the time window
fy K t Kt inwhich|¢, (t)—chl <« 1. (This corresponds tot ~ #, because ¢, (t ~ 1,) = ch.)
In this time window and for ' — T}, ¢, (¢) is predicted to obey the equation [23, 24, 142, 143]

(1) = f; +hg/lo] 8()

+hglo|Ag i +hylo|B*B, 1%, (25)
where f = t/t, and B = B()) is a constant [145]. The first line of equation (25) is called
the ‘factorization theorem’. This name refers to the property that the correction term for f;’
is split into two factors: a factor depending only on space, the ‘critical amplitude /,’°, and a
factor depending only on time and temperature, the ‘B correlator G(¢)’, G(t) = /]o]| g(@.
Both f; and h, are independent of T'.

The factorization theorem is the MCT result in leading order of /[o], the second line of
equation (25) representing corrections to it for both short times (~f~2¢) and long times (~f 2).
These corrections violate the factorization property due the ¢ dependence of the factors A,
and B,. Expressions for A, and B, have been worked out for hard sphere systems [142]. For
the subsequent analysis it is only important to know that (i) A, and B, are given in terms of the
static structure at 7.—they are independent of 7—and (ii) they exhibit the same dependence
ongq.

Predictions for the a regime. Within MCT the term ‘o regime’ refers to the decay of ¢, (t)
from f7 to zero. As f; = ¢q(t ~ 15), this decay occurs for r > f,, thus overlapping with
the B process for 1, < t < t,. t is the relevant timescale for the o process. Ideal MCT
predicts that the o process satisfies a time—temperature superposition principle (TTSP) for
T — T7 [23, 24, 142, 143]. Quite generally, the TTSP means that correlation functions,
measured at different 7', collapse onto a temperature independent master curve if the time

variable is rescaled by the « relaxation time. MCT derives the TTSP in the following form:
bg (1) = B¢ (t/1;) t =1, (26)
where (;;q(-) denotes the o master curve. This equation needs some explanation, lest the key
features be lost. Two points will be highlighted. (i) The master curve is independent of 7', but
depends on ¢, i.e., on the correlator under consideration. (ii) There is only one timescale ¢/ (T)
underlying the « process. Close to T, all relaxation times 7, defined e.g. via ¢, (t,) = 0.1,
are predicted to be proportional to ¢/ (7). That is,
7,(T) = Cy1,(T), 27
with C, being a T independent constant [142].
No simple closed expression for the o master curve is known. However, it can be well
approximated by a Kohlrausch—Williams—Watts (KWW) function

b0 = fRexpl—(t/< ) (=1, (28)
except in the regime where 8 and « processes overlap (i.e., forz, <t < t). There, systematic
deviations are expected because the short time expansion of equation (28) does not agree with
the exact short time expansion of qu (t/t.). The latter is given by

b (1) = fS—hyB (t/1,) (1, <1 K1), (29)
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where B is the same constant as in equation (25). Equation (29) is called the ‘von Schweidler
law’. It shows that ,Bff # b in general [146]. However, there is a special case, the limit of large
¢. In this limit, it was proved [147] that there is a time interval 7/1, <« th /t. < 1 in which
the o process obeys

Jim (1) = f7 expl=Ty(t/1)"), T, ocq. (30)
This implies

lim X = rc, lim gX = b, lim € oc g™ 1. 31)

g—o0 "4 q g—oo' 4 g—oo 1 7

The preceding results for the o process are valid in leading order of o; corrections are of order
|o| [142, 143]. Thus, one expects that the MCT predictions for the « process should extend
to higher temperatures than those for 8 process, corrections to which are of order /]| (see
equation (25)).

Discussion.  The previous paragraphs summarized predictions from ideal MCT. These
theoretical results have to be put into the perspective of possible applications to simulation (or
experimental) data. This naturally leads to the question of their range of validity. We want
to briefly address this question via the following three remarks. (A detailed review of the
derivation, the physical interpretation, the limitations and an extension of the ideal MCT can
be found in [139].)

e MCT aims at describing the structural relaxation of supercooled liquids well outside the
time window of the initial decay of ¢, (¢), that is for t >> #, (for a precise definition of £,
see e.g. [148]). Relaxation processes for short times ¢ ~ f are not treated properly. Thus,
deviations have to be expected in the high T liquid state, where ¢, (¢) already decays
on the scale fy. Some feeling for what ‘high 7’ means can be obtained from a recent
comparison between MD simulations for a binary LJ mixture and MCT calculations in
which the theory was extended by a model allowing one to describe the short time decay of
¢, (1) [149]. This study demonstrates that the nonlinear coupling of density fluctuations,
responsible for the slow dynamics close to T¢, is irrelevant for 7 2 3. On the other hand,
the nonlinear coupling is no longer negligible at 7' = 1—that is, already for temperatures
T =~ 2T..

e For T =~ 2T, equations (22-31) cannot be applied yet. Calculations for hard spheres
suggest that some of the asymptotic results should become observable for (T — T¢)/T. <
0.1 only, whereas much smaller distances from T, are required for them to be fully borne
out [142, 143]. This range of validity sensitively depends on ¢, i.e., on the correlator
under consideration, and on whether the dynamics is monitored in the time domain or in
the frequency domain. The time domain appears to be better suited for analysis via the
asymptotic results [142, 143].

e Not only at high T, but also very close to and below T, deviations from the ideal MCT
are expected. Ideal MCT predicts a complete structural arrest at 7. A freezing at T
is not observed experimentally [21, 150]. (An exception is possibly provided by hard
sphere-like colloidal suspensions [128].) Rather than diverging, the structural relaxation
time continuously increases when cooling the glass former through 7, toward 7. Thus,
alternative relaxation mechanisms, not incorporated in the ideal MCT, must exist, which
eventually become dominantas T — 7. and particularly for 7 < 7. Attempts to include
these missing relaxation mechanisms have led to the extended version of MCT [140, 141].
However, the validity of this extension is not well understood [151, 152]. So we base the
subsequent analysis on the ideal MCT.
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Figure 9. Test of the factorization theorem for ¢, () at T = 0.46 via equation (32). By definition,
Ry (1" = 0.610) = 1 and R, (r' = 86.43) = 0. The times ¢’ and " (vertical dotted lines) were
chosen at the beginning and at the end of the plateau region (see figure 8) so that the denominator
of equation (32) is large. This is advisable for numerical stability. Note that the order of ¢, (1)
before the f regime is preserved when leaving it at long times (compare e.g. the curves at g = 6.9
and 19; the same ‘ordering rule’ is also observed for simple glass-forming liquids [107, 153]).
This is qualitative evidence for the MCT prediction that the short and long time corrections to the
factorization theorem exhibit the same ¢ dependence (cf equation (25)). This figure is adapted
from [63].

3.3.2. Qualitative comparison: f regime. Inthe Bregime, ¢, (¢) should obey the factorization
theorem (cf equation (25))

b (1) = fS+hy G (D).

This equation suggests a simple test which works directly with the simulation data without
resorting to any fitting procedure. (Due to this appealing feature the same test was also
performed in other simulations of fragile glass formers [107, 153-155] and of SiO, [156].)
Assume that we select two times ¢" and ¢” from the intermediate window where the plateau
occurs; they can be any times one likes. Then, the ratio

g =) G — G

9 = ¢t GG =G

will be independent of the wavevector if the factorization theorem holds.
Figure 9 shows R, (t) for T = 0.46. We find that there is indeed an intermediate time

window where the scattering functions cluster around a master curve. Similar master curves

are also obtained at higher T" as long as ¢, (t) decays in two steps (i.e. for 7' < 0.52; cf figure 8).

Furthermore, at a given T the master curve is the same for different correlation functions, such

as the incoherent scattering function, the coherent scattering function of the chains and the

Rouse mode correlators [63].

R, (1)

(32)

Relevance of the result found. The Rouse modes provide a good example that not every two-
step process satisfies the factorization property. An indiscriminate fulfilment would of course
invalidate equation (32) as a meaningful hint of the applicability of MCT. The factorization
theorem was applied to simulation results for the chemically realistic model of cis—trans 1,4-
polybutadiene [53], alluded to in section 2.1. The test was motivated by the observation
of a two-step relaxation for the dynamic Rouse modes (and for the monomer mean square
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displacement; see figure 3). This relaxation occurs, however, at T = 273 K; that is, at a
reduced distance to T, = 216 K of about (T — T;)/ T. ~ 0.26. For the Bennemann model this
would correspond to 7' &~ 0.57, a temperature too large for the two-step decay to be observed
(figure 8). In fact, the factorization theorem was found to be violated in [53]. The authors
rather argued that the observed two-step relaxation should be interpreted as a consequence of
intramolecular rotational barriers for the torsional angles and not as a result of the ‘cage effect’
underlying the MCT g process (which appears to emerge, however, in the cold melt close to
T. ~ 216 K [52]).

Length scales of the B process: evidence for the cage effect. The term ‘cage effect’ means that
a particle in a dense liquid is permanently surrounded by other particles, spatially organized
in nearest neighbour shells. The particle is enclosed in a ‘cage’ and simultaneously ‘cages’
its neighbours. Thus, any displacement of the particle beyond early time oscillations hinges
on the ability of its neighbours to move, and the caged particle itself will trigger motion of
the neighbours. This picture appeals to cooperative rearrangements on the scale of the nearest
neighbour shells as a prerequisite for structural relaxation to occur. The factorization theorem
supplies a convenient means to quantify the spatial extent of this (so-defined) cooperativity for
the B process.

Since length scales are easier to visualize in real than in reciprocal space, we introduce
the Fourier transform of the intermediate scattering functions, the van Hove correlation
functions [119] for the self-part (G(r, 1)) and distinct part (G4(r, 1)) of the melt,

1 n N ., .,
Gs(r,1) = m<;;5(7“— [r(t) — 7 (0)])>, (33)
1 n N
— a b
Ga(r, 1) = Gp(r, 1) + W< Z Za(r — [ — 7 (0)])>, (34)
i#j a#b
where G (r, t) is the distinct part of the van Hove correlation function for a chain
1 n N
Gp(r, 1) = —N< YD s(r - - rf(0)1)>. (35)
NN w2
Here r¢{ denotes the position of monomera (a = 1, ..., N) inchaini (i =1,...,n). In the
B regime we expect
Gx(r, 1) = Fx(r) + Hx(r)G (1) (x=s,p,d) (36)

so the ratio [154, 155]
Gy (r, t) — Gk(r, t,) _ Hy(r)
Gx(r',1) — Gy (r', 1) Hx(r')

should be independent of time and inform us about the length scales involved in the 8 process
for the quantity ‘x’.

We computed equation (37) for various temperatures. An example for 7 = 0.48 is
presented in figure 10. Of course, the main interest of the figure consists in the spatial
variation of Rx(r, t); but two key features also emerged from the analysis [63] which should
be mentioned. (i) We find master curves which depend on the type ‘x’ of the correlator, but
are independent of 7. (ii) The master curves can only be constructed for times from the S
window. For shorter and longer times no superposition of the data is obtained. Both findings
are in qualitative accord with MCT.

Ry (r,t) = (r' = constant) 37)
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Figure 10. Ry (r, t) (equation (37)) versus distance r for nine different times from the B regime at
T =048(" =0.988 <1 <1’ =21.97). Panel (a) shows Ry (r, ) for the self-part of the van Hove
function, panel (b) that for the distinct part of the chains and panel (c) that for the distinct part of
the melt. For the distinct parts the corresponding pair distribution functions, g, (r) (chain) and g (r)
(melt), are presented for comparison (dotted lines; gP(r) and g(r) are rescaled to fit into the figure).
Note that the first peak of g (r) reflects the two length scales of the model, r, &~ 0.97 and ry;, ~ 1.12
(section 2.2). The constant r’ is chosen such that the (positive) denominator of Ry (r, 7) is largest at
ry (rf = 0.13253, r{, = 0.9575, r} = 1.1025). This is favourable for numerical stability. In panel
(a), n (= 0.2323) denotes the zero of R,(r, t) and the circles represent the Gaussian approximation,
equation (39). Equation (39) has a zero at /6r¢ =~ 0.2327 and a minimum around ~/10rs =~ 0.3.
Here, ry. (=0.095) is the Lindemann localization length (compare the discussion under the heading
‘B process at the level of the single-particle motion’ in section 3.3.2). In all panels, the dash—dotted
grey lines correspond to the time closest to ¢’ where numerical inaccuracies occur because Ry (r, 1)
is undetermined for t = ¢’. From [63].

Viewing this from the perspective of equation (36) we can conclude that distances
for which H(r) is zero will not contribute to the relaxation of the van Hove correlation
functions. Figure 10 demonstrates that Hy(r) quickly vanishes for distances larger than a few
monomer diameters, the most long ranged being the distinct part of the melt, Hy(r), whose
oscillations persist to r &~ 4. On the level of the collective density fluctuations the § relaxation
thus comprises a monomer and its neighbours up to about the fourth-neighbour shell. The
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most important contributions come from the first-and second-nearest neighbours. This local
character of the relaxation is direct evidence for the cage effect.

B process at the level of the single-particle motion.  For the self-part of the van Hove function
we find that the monomer motion is limited to displacements smaller than 1 (equal to the
monomer diameter). For shorter distances, Hg(r) vanishes at r, = 0.2323, is positive for
r < r and is negative for r > r. The sign of H(r) is an important factor in determining
Gs(r, t),1.e., the probability of finding a displacement of size r in time ¢. To see this we exploit
a property of the B correlator G(¢). It decreases monotonically with 7 [142]. So the rate at
which the van Hove function relaxes is given by

0Gy(r,1) _ e AG (1)
at at

This equation suggests the following interpretation. In the course of the g process the
probability for monomer displacements of size r decreases most where Hg(r) is largest
(r &~ 0.13), and increases most where it is smallest (r &~ 0.35). Since r = 0.35 is much
less than the monomer diameter, we conclude that a monomer which attempts to replace one
of its neighbours—that is, attempts to make a displacement of order 1—is partially reflected
back to its initial position. This ‘reflection’ has also been demonstrated by a different analysis
in a simulation of a (polydisperse) hard sphere system [157]. There, it was found that the
directions of particle displacements in successive time intervals are on average opposite to
each other, provided that » < 0.8. The intermittency of displacements of order 1 is evidence
for the transient localization of the particles by their nearest neighbours in the 8 regime.

For r < 1 figure 10(a) shows that there is a characteristic distance, the distance r; where
H(r) vanishes. Numerically, | agrees with the zero of the Gaussian approximation [63]

H(r)
H(r")

which occurs at \/ErsC >~ 0.2327 (rge =~ 0.095 [59]). The parameter ry. is called the
‘critical localization length’ in MCT [143]. Its value may be interpreted in terms of the
Lindemann criterion of melting. The criterion states that a (crystalline) solid melts if the
particle displacements about the equilibrium position reach ~10% of the particle diameter
(seee.g.[158, 159]). Thus, the Gaussian approximation—though only in qualitative agreement
with the simulation results for » 2 r (figure 10(a))—suggests that ry. is the important length
scale for the single-monomer motion in the § regime.

o —H(r). (38)

oc (1 — r2/6re) exp (—r?/4rk), (39)

Evidence for string-like motion? Equation (38) also applies to the distinct parts of the van
Hove functions. Since H,(r) and Hy(r) oscillate in phase with the corresponding pair distri-
bution functions for » 2 1 (cf figure 10), distances where the probability of finding another
monomer was originally high are depleted, whereas others of initial low probability are pop-
ulated. So, monomers also penetrate into the region < 1 that another monomer occupied at
t = 0. Of course, the monomers can only penetrate into this region to the extent that the initially
present monomer leaves it. Thus, it is not unreasonable that forr < 1, H,(r) and Hy(r) appear
to be the mirror image of Hy(r) for r 2 ry. If a monomer moves away from its initial position
by r & 0.35 (minimum of H(r)), other monomers can enter the initial exclusion zone up to
r ~ monomer diameter — 0.35 ~ 0.7 (~the minimum of H,(r) and Hy(r)). As the displace-
ments involved are small, only nearest neighbours should be able to participate in this partial
replacement process. So figure 10 suggests that adjacent monomers follow each other. In fact,
a microscopic analysis of the monomer motion supports this interpretation. In section 3.4 we
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Figure 11. Time—temperature superposition (TTSP) for ¢, (¢) at ¢ = 4 (lower panel), 6.9 (right
ordinate in upper panel), 12.8 (left ordinate in lower panel). The time axis is scaled by the «
relaxation time 7,+ at the maximum of S(g). (Here, we took ¢* = 6.9; see figure 5.) 74+ is
defined by the condition ¢y« (z4+) = 0.1. Note that the temperature interval where TTSP is well
fulfilled depends on the wavevector, and that deviations begin to occur at 7 = 0.46 (dashed
lines), i.e., close to T, (=~0.45). The dotted horizontal line, labelled * ch fit " indicates the value
of the nonergodicity parameter at ¢ = 6.9 resulting from an analysis of the MCT B process via
equation (25) (cf section 3.3.4). The dotted horizontal line, labelled * ch MCT> ig the MCT prediction
based on the static input obtained from the simulation (cf section 3.3.5). This figure is adapted
from [64].

will find that (highly mobile) monomers tend to follow each other in quasi-one-dimensional
paths, and that this tendency gradually develops throughout the 8 regime, is maximum for the
early o relaxation and vanishes when the monomer displacements become diffusive.

3.3.3. Qualitative comparison: a regime. In the o regime, ¢, (1)—and other correlation
functions coupling to ¢, (1)—are expected to obey the TTSP (equation (26)).

In previous tests of equation (26) a separate scaling time was defined for every correlation
function to be analysed [58-61, 64]. For ¢,(t) this implies that the scaling time depends
on ¢g. A more demanding test [149, 160] would employ the same time for all wavevectors,
as suggested by equation (27). For instance, one can choose 7,-, the relaxation time at the
maximum of S(g), for all g. This choice is made in figure 11. We still find that the TTSP
holds, but the quality of the superposition is inferior to that obtained by adapting the scaling
time to the ¢ value under consideration (see e.g. [64]).

Irrespective of how the scaling time is chosen we observe deviations from TTSP at both
large and small 7. At large 7', one may argue that the temperature is too far away from 7
for the asymptotic result (26) to apply (see section 3.3.1). Within MCT, deviations at high T
are thus expected and predicted to depend on the wavevector [142, 143]. For instance, hard
sphere calculations for ¢, (t) suggest that the TTSP should extend for g &~ ¢* to higher T than
for wavevectors further away from the maximum of S(g) [142]. We find the same behaviour
here (cf figure 11).
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The deviations from the TTSP at T = 0.46, however, pose a problem for the ideal MCT!.
They are observed in several recent simulations very close to the critical temperature [161]
or critical density [107, 162]. Within MCT these deviations from the ideal behaviour are
attributed to additional, not yet well understood relaxation mechanisms (see the discussion
at the end of section 3.3.1). Therefore, we focus, in the subsequent quantitative analysis,
on T = 0.47. This temperature is a compromise: it is close to T, but not so close that the
additional relaxation mechanisms obscure the characteristics predicted by the ideal MCT, such
as the TTSP (cf figure 11).

3.3.4. Quantitative comparison: asymptotic results. Figure 12(a) illustrates the evolution of
the structural relaxation close to 7; with two examples: ¢, (f) and its incoherent counterpart,
the incoherent intermediate scattering function qb; (1),

M
¢ (1) = ﬁ;exp{—iq @) - n(O)]}>, (40)
where 7;(t) denotes the position of the ith monomer at time ¢+ and M (=nN) the total
number of monomers in the melt. q); (t) measures the decorrelation of the positions of an
individual monomer with time on length scale 1/q. Three time regimes may be distinguished in
figure 12(a): early times where the initial decay of ¢, () and ¢; (¢) from 1 occurs, intermediate
times of the B process and late times of the « relaxation.

Early times (t < 0.2). The initial decay of the correlation functions is described by the exact
short time expansions

1

pr(1)=1- 3 QZZ 2. with QZZ = q*?, (41)
1, e RV

¢‘i(t):1_§th + .. Wltth:Tq)’ (42)

where v = kg7 /m (=T in our units) is the thermal velocity.

These short time expansions hint at a possibility for how qb,j (¢) and ¢, (¢) could behave at
longer times. The term v?¢? also determines the initial increase of the monomer mean square
displacement (MSD) g (), i.e.,

go) = ([ri() = i) =307+ 43)
this suggests a ‘Gaussian approximation’ for ¢; (¢):
¢} (1) = exp[—4°go(®)] .- (44)

On the other hand, appealing back to equation (42) we may assume that ¢; (t) and ¢, (1) are
closely related to one another, ¢, (¢) being given by

$q(1) = P (1) with g = q/vS(q). (45)

In liquid state theory, this assumption is called ‘modified Vineyard approximation’ [163];
in [164, 165] it is referred to as a type of ‘de Gennes narrowing’.

13 Note, however, that no deviations are observed in the B regime for T = 0.46. The simulation data still satisfy the
factorization theorem (cf equation (25) and figure 9). The latter finding is not limited to our polymer model; it was
also observed e.g. for amorphous silica [156], and it can be rationalized within the framework of MCT. The extended
version of the theory shows that the factorization theorem still holds even if ergodicity restoring processes close to
and below T, are taken into account [141].
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Figure 12. (a) ¢; (¢) (leftordinate) and ¢, (1) (right ordinate) versus time ¢ for 7 = 0.47andg = 6.9
(~ maximum of S(q); see figure 5). The simulation data (circles) are compared with theoretical
formulae which (approximately) describe the decay of the scattering functions in different time
regimes: the exact short time expansion of ¢f1 (t) and ¢4 (1) (dash—dotted lines; equations (41)
and (42)), the fit result for the MCT g process (solid lines; equation (25)) and the KWW function
(dashed lines; equation (28)). To obtain the parameters of the KWW function the fit interval was
limited to large times, where ¢f1 (1) < f;c /2 and ¢, (1) < ch /2. The values of the nonergodicity
parameters f ¢ and f£, as obtained from the MCT B analysis, are indicated by horizontal dotted
lines. (b) Comparison of ¢Z () (filled circles) with the Gaussian approximation, equation (44) (solid
line), at ¢ = 4. This g value closely agrees with the value q/+/S(q) (~4.1) found for ¢ = 6.9.
The comparison of ¢, (¢) at ¢ = 6.9 (open circles) with ¢; (1) at ¢ = 4 is thus a test of the modified
Vineyard approximation (equation (45)). All data refer to 7 = 0.47.

Figure 12(b) shows that neither of these ansétze provides a satisfactory description. At
q = q*(=6.9), ¢, () relaxes more rapidly than ¢2 (7) at the (smaller) wavevector g (~4). ¢2 (1)
in its turn also relaxes more slowly than the Gaussian approximation (44). These deviations
reveal the weaknesses of equations (44) and (45). Equation (45) presupposes that correlations
in the motion of monomers i and j can be accounted for by a mere shift of the wavenumber
in the incoherent scattering function. There is no obvious reason that such a mapping of
the collective dynamics onto the single-monomer dynamics is permissible for local processes
where intermolecular correlations should be pronounced. On the other hand, equation (44)
assumes that the displacement vectors r;(#) — r;(0) are for all times Gaussian distributed
random variables. This would, for instance, be true if the vectors were linear functions of a
random, white noise force. Again, there is no reason to assume that the force exerted on a
monomer by the surroundings has this stochastic character for all scales of time and length
(outside the transient microscopic regime where equation (43) is valid). Indeed, figure 12(b)
shows that ¢} (7) for g = 4 exhibits deviations from Gaussian behaviour in the o regime.
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A more detailed comparison between equation (44) and the simulation results for ¢f](t)
reveals that the extent of the deviations depends on ¢ and . The following general trends may
be pointed out [59]:

(1) For g 2 ¢*, equation (44) only works for times before the 8 process. Its range of validity
increases with decreasing ¢g. Yeteven atg = 1, the smallest wavevector studied, deviations
are still clearly visible in the late o regime.

(i) The neglect of some dynamic correlations in the Gaussian approximation makes
equation (44) decay faster than the simulated qb; (1).

The deviations described in (i) and (ii) are not limited to the incoherent scattering function.
They are observed also for the coherent scattering function qb,’,’(t) of a chain, not only in
the Bennemann model [63], but also in atomistic simulations of polyethylene [166] and
polybutadiene [56, 167]. This implies that one has to be careful when fitting simulation
or experimental data for q)g (1) to the Rouse model [2] of polymer dynamics because the
assumption of Gaussian distributed monomer displacements underlies this model. Deviations
from the theory or unsatisfactory values of the fit parameters can originate from the non-
Gaussian character of the displacements on the scales of length and time where the theory is
applied in practice (see also [32] for a topical review of this point).

B regime. Figure 12(a) shows that there is an intermediate time window (1 < ¢ < 100) in
which ¢, (1) and ¢ (1) decay very slowly with time. The previous qualitative analysis identified
this time window with the B relaxation of MCT. For a quantitative analysis we revert to the
factorization theorem (equation (25))

x fit

93(1) = f;° + Wy g(D) = £ + = g(D), (46)

where / = t/t, (1, is defined in equation (22)) and h;ﬁ‘ = hyt5. Here we introduced the
superscript ‘x’ to write the equation for incoherent and coherent scattering in a compact form:
‘x = s’ refers to incoherent scattering, while no superscript is utilized for coherent scattering.
Equation (46) contains four fit parameters, f*°, h;ﬁt, t,, and A which fixes the shape of
g(f). These parameters may be determined in the following way [59]: we start the analysis
by focusing on ¢ (r). First, g(?) is calculated for different values of A numerically, applying
the program used in [141]. The result is then inserted into equation (46) and the remaining
parameters are optimized. Iterating this procedure for other values of A, ¢ and T allows us to
find the range of A which provides a good fit and is consistent with theoretical expectations.
The latter condition implies, for instance, that A should be independent of 7', that #, should
obey equation (22) and that, for a given T, ¢, (r) must equal £, for all ¢ at the same time
t = too(T) (o 1) because g(feo) = 0 according to equation (46). More generally, we expect

¢ (teo) = fq"C for all ¢ and ‘x’. 47)

This is an important equation: it allows us to determine first 7., from the analysis of one
correlator, ¢, (¢) in our case. The knowledge of 7, then supplies an easy means to calculate
/¢ for other correlators ‘x’. We applied this strategy to the coherent scattering function of a

chain, ¢g (t), and of the melt, ¢, (¢), in [63]. The last remaining parameter, h;ﬁ‘, may also be
determined by exploiting the analysis of ¢, (¢). It can be obtained via

w090

T ole@D/1E sy,
where the derivatives are evaluated numerically [63].

(48)
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Figure 13. Nonergodicity parameters f,;‘c versus g (f3¢: incoherent scattering; ftf “: coherent
scattering of the chains; qu: coherent scattering of the melt). The solid line indicates the Gaussian

approximation f;c = exp(—qzrszc), rse 2 0.095 being the Lindemann localization length. The
collective static structure factor S(g) for 7 = 0.47 is shown for comparison (dashed line; S(q) is
multiplied by 0.1). This figure is adapted from [63].

Figure 12(a) illustrates that the fit procedure described yields a good description of both
¢, (1) and ¢, (¢) in the B regime. The g dependence of f and h; derived from the fit
[59, 63] shares many qualitative features predicted theoretically [142, 143] and also found
in simulations of nonpolymeric glass formers, including simple liquids [107, 162, 168, 169],
diatomic molecules [170, 171], water [172], ortho-terphenyl [160, 161, 173] and SiO, [174]:

(i) For g 2 g, f,; closely follows the oscillations of S(g) (cf figure 13). For g 2 11, we
find that f ~ f°. The agreement between coherent and incoherent scattering becomes
better with increasing g.

(i) f,° monotonically decreases with g, being well described by f© = exp(—g*r2) for
g < 8. Here, ry is the Lindemann localization length (compare the discussion under the
heading ‘B process at the level of the single-particle motion’ in section 3.3.2). The value
of ry is about 10% of the monomer diameter.

(iii) The critical amplitude &, is roughly in antiphase with f7 for ¢ < 10 (not shown). We
find that, in the same way as f_ approaches [/, hy ~ hy’ for large g.

In addition to these features the following particularities occur for our polymer model.
First, fqp and hg, the MCT parameters corresponding to the coherent scattering function of a
chain, closely agree with their incoherent counterparts, f, and i, except for small wavevectors
(¢ < g”) probing the size of a chain and beyond. Second, f; exhibits a pronounced shoulder
at g ~ 4 (cf figure 13). As regards the aforementioned antiphase behaviour with respect to

o> g has aminimum at g = 4. These features have no parallel in S(¢), are absent for simple
liquids, but appear to be present for the molecular glass former ortho-terphenyl [160, 161].

o regime. In experiments and simulations the KWW function (equation (28)) is commonly
found to provide a good description of the o relaxation except at short times (r < 7,';()
[18, 21, 22]. Viewed from the perspective of MCT this failure at early times (for 7 > T¢) is
a reflection of the von Schweidler process (equation (29)), governed by the exponent b which
is in general different from g ;( (see section 3.3.1). So, when analysing the o process via the
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Figure 14. Stretching exponents ,B(’;K versus ¢ for the o decay of the incoherent (x = s), coherent
chain (x = p), and coherent melt scattering functions. The exponents were obtained from a three-
parameter fit (fXK, r{;‘K, ,B(’;K) of equation (28) to the simulation data for ¢;(z) at T = 0.47.
The fit interval was limited to ¢,’;(z) < f;c /2 (see footnote 15). The horizontal dashed lines
indicate the von Schweidler exponents derived from the analysis of the B relaxation by fitting the
simulation data to equation (25) (bg fr = 0.75) and from an MCT calculation based on simulated
static properties; cf section 3.3.5 (byct = 0.6). For comparison, the collective static structure
factor S(g) at T = 0.47 is shown (dashed line; scaled to fit into the figure).

KWW function we should exclude contributions from the late 8 regime'*. Different strategies
have been proposed for this purpose (see [63, 64] and references therein). One possibility
consists in fitting the late o process only [168, 170], by restricting the fitting interval to, say,
BE(1) < [2/2.

This is the approach we have chosen here. Figure 12(a) exemplifies the results obtained at
q = q* for ¢ (1) and ¢, (7). As desired, the KWW function barely overlaps with the B process
and provides a good description of the final relaxation. These features are not limited to ¢*.
Extension of the analysis to other wavevectors gives the following results [59, 64].

The dependence of the KWW amplitude f;K on ¢ closely agrees with that of the
corresponding nonergodicity parameters for ¢, (1), q)g (t), and ¢, (¢) (cf figure 13).

From the three parameters of equation (28) the stretching exponent ,B;‘K is most plagued
by uncertainties of the fit'>. This makes a quantitative interpretation problematic. Still some
trends appear to emerge (figure 14).

For ¢ 2 q* the exponent ,3;( derived from ¢, (¢) is roughly in phase with S(g), whereas

,B;K and ,BEK, the exponents for ¢, () and ¢§ (1), continuously approach a large g asymptote.
The asymptote appears to be smaller than bg g, the von Schweidler exponent derived from

14 1f the B process is not excluded from the analysis, one incurs the risk of finding a temperature dependent stretching
exponent /SZI‘K. Such a result obviously violates the TTSP (equation (26)). See [52, 107] for good recent discussions
of this problem.

15 When fitting the « relaxation with the KWW function one has to take into account that some parameters are very
sensitive to the choice of the time interval utilized in the fit. In [64] we found the following trends. The KWW
amplitude f(;‘K does not vary much with the fit interval. It is usually within 15% of the corresponding nonergodicity

parameter f;c. As f(;‘K ~ f;c, the KWW relaxation time can be determined either by ¢;(r;K) = f(;‘K/e or by

(’]‘(r{;‘K) = f{;‘c /e. We have employed the second prescription in figure 15. In contrast to f{;‘K and r{;‘K, the stretching
exponent /3:;'( appears to be more sensitive to the choice of the fit interval. Depending on ¢, deviations up to 30% are
possible. Particularly at large g (¢ = 15), where f;K < 0.2, big fluctuations occur (cf figure 6 of [64] and figure 9
of [59]).



R884 Topical Review

i X x 13K
[ x \\ q
I o N ~a o o0tk
I N
\ .. N
s\ ~q-4 S N\ - Tq
10 E \\ O \\\
- .QA’QDQ S S~ ~qVomer
I Qg T
L /\ Qg T~- ~q Vopit
// \\ -~ o)
10°F NG
- S(a) - -
I B L J
5 10 20
q

Figure 15. Log-log plot of the KWW relaxation times r,;‘K

coherent chain (x = p) and coherent melt scattering functions. r,;‘K is defined by ¢;‘(r{;‘K) = f{;‘c /e.
The simulation data at 7 = 0.47 are used in the analysis. The g values shown are: ¢ = 2, 3,4, 5,
6,6.9,7.15,8,9.5, 11, 12.8, 14, 16, 19. The dashed lines labelled ‘~g~ /4> and ~q~!/bmct
show the large ¢ prediction of MCT (equation (31)), utilizing the von Schweidler exponent from
the fit to equation (25) (bg it = 0.75) and from an MCT calculation based on static input from
the simulation; cf section 3.3.5 (bycr = 0.6). The dashed lines labelled ‘~¢g 4 and ‘Nq’z/"o’
indicate respectively equation (51) and equation (53) with xo = 0.63 (2/xp = 3.2). §, (scaled and
shifted) is depicted for comparison (dashed line). Note that r{f is roughly in phase with S(gq) for
g 2 g*. This figure is adapted from [64].

versus ¢ for the incoherent (x = s),

Table 1. MCT parameters resulting from fits to the asymptotic formulae of the 8 process (labelled
‘MD’; cf section 3.3.4) [59] and from ‘ab initio’ MCT calculations based on static input provided
by the simulation (labelled ‘MCT’; cf section 3.3.5).

1. A a b y

MD 0450 0.635 0352 0.75 2.090
MCT 0277 0.722 0317 0.60 2.406

the fit to equation (25); a result seemingly in contradiction to equation (31). On the other
hand, in section 3.3.5 we will sketch an ‘ab initio’ comparison between simulation and theory,
suggesting a smaller value for b, byicr = 0.6 (table 1). This value appears to be in better
agreement with the large ¢ behaviour of 8 ;‘K if one takes into account the following two points:
(1) ,3;“( is hard to determine forg 2 15 (see footnote 15). (ii) The limitlim,_, o ,3;“( = b should
be approached from above—and not from below as in figure 14, provided that b = bg—
according to theory [146] and other simulations [107, 160, 162, 172, 175].

Along with the convergence of ,B;K toward b, MCT also predicts 'C;K ~ g~ '/% in the large
g limit (equation (31)) [147]. Figure 15 is indicative of such a common power law for t;K, 7 K
and r;(, if ¢ 2 10. The exponent is compatible with b = bg g, but harder to reconcile with
b = byjct, contrary to what was found for 8 ;‘K. A critical inspection of the results obtained for
,3;‘K and t;K must therefore come to the conclusion that it appears difficult to unambiguously
confirm at a quantitative level the large g behaviour of equation (31) in the range of the
wavevectors accessible to our simulation (see also [107, 160] for a discussion of this problem).

While the previous discussion focused on g 2 g*—that is, on local length scales for which
our model resembles a simple liquid, justifying an interpretation using the MCT developed for
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these systems—figures 14 and 15 reveal interesting features for ¢ < ¢* that are not present
for simple liquids. First, B} exhibits a maximum (or a shoulder [64]) at ¢ = 4 (figure 14)'.
This is the same range of ¢ values for which f has a shoulder (figure 13) and where th
passes through a maximum (figure 15). (A maximum of r,f for g < g* is also observed for
molecular glass formers [160, 161, 170].) Second, ,BZK does not continuously increase toward
1, as expected for simple liquids, but appears to tend to a smaller value (figure 14). Similarly,
;% does not cross over to the hydrodynamic limit 73X ~ g2 for ¢ < ¢*, but exhibits a

stronger power law dependence (figure 15).

Interpretation via the Rouse model. The range ‘q < g™’ probes length scales corresponding
to the structure of chain sections, of the overall chain size and beyond. So it appears natural
to search for an explanation based on the theory of polymer dynamics [2]. As long as there
are no entanglements, guidance for the interpretation of the incoherent and coherent chain
scattering may be obtained from the Rouse model [2, 3]. This model is a theory for a single
chain in an effective field. It views a chain as a sequence of monomers (‘beads’) which are
connected by harmonic springs with a force constant proportional to 7. Each monomer of this
Gaussian chain is subject to a random force and a friction force, both of which are taken to
be identical for all monomers. While unrealistic on the local scale of a monomer, the Rouse
model is supposed to correctly address universal aspects of polymer dynamics which appear
forg < g and t > 74

For ¢;(r) and ¢qp (r) the model predicts that one has to distinguish between the
hydrodynamic regime, realized for ¢ < 1/Rg, and the regime 1/R, < g < ¢*, which is
sensitive to the internal structure of the chain. More precisely, we have (x = s and x = p) [2],
—q*Dt q <z

. (49)
—q*b*(t/v0)"? x <4a4<q",

In ¢X() ~
where b is the statistical segment length (b> = limy_ o Re2 /N), 79 the relaxation time of a
monomer (equation (3)) and D denotes the diffusion coefficient of a chain.
The diffusion coefficient can be obtained from both the monomer MSD g (¢) and the MSD
g3(1) of the chains’ centre of mass (COM) via

D = lim gO(;) = lim g36(;), g3 () = ([Ri(t) —Ri(O)]2>» (50)

where R;(t) denotes the position of the COM of the ith chain at time 7.
Equation (49) implies

IB;K = 11 ql <« % %
3 N KqgKq,
and (&1))
,L,;(K ~ g YRS ~ q:j ql < RLg’ .
q R KgKLKqg”.

16 In the limit ¢ — 0, the stretching of ¢, () is pronounced; ﬁ(][( becomes very small, ,B;( ~ 0.3 for g <2 (figure 14).
Such a small KWW exponent for coherent scattering is unexpected from MCT calculations for hard spheres [146].
It might indicate that the o relaxation of collective density fluctuations on large length scales is more complicated
in polymer melts than in simple liquids. On the other hand, our simulation data for small ¢ should be considered
with care. As g = 2 /L = 0.6 is the smallest ¢ value compatible with the linear dimension L (*10.5 [59]) of the
periodic simulation box, the relatively few reciprocal wavevectors available for ¢ < 2 lead to unsatisfactory statistical
precision for ¢, (¢), and the possibility of finite size effects cannot be excluded [63, 64]. On the simulation side, larger
systems should be studied to scrutinize the relaxation for small wavevectors.
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The key feature of this equation is that there is a stretched exponential decay that is related not
to the glass transition, but to chain connectivity. The decrease of ,BZK and ,BE;K as well as the

power law increase of th and 7} ¥ observed in figures 14 and 15 for g < ¢*, are indications
of this Rouse-like relaxation.

We used the term ‘Rouse-like’ deliberately in the preceding sentence. It shall be stressed
that in our simulations [59, 61] we find both accord with Rouse predictions—e.g., the
Rouse modes are orthogonal for all 7—and deviations from them—e.g., the Rouse modes
are stretched with stretching exponents depending on the mode index. Such deviations are
not uncommon. They are also observed in other simulations of nonentangled polymer melts
using e.g. atomistic models [32], a possible reason being that the separation of length scales
1/R; < g < g* required in equation (49) cannot be realized without entanglements setting
in'”. If entanglements should be avoided, the chain length must be limited to N < N,; but
then, finite V corrections to the Rouse behaviour should be expected.

Within the framework of MCT these corrections have recently been discussed for a melt
consisting of Gaussian chains whose monomers interact via a hard sphere potential [176]. For
N = 10, the chain length studied in our simulations, the theory semiquantitatively reproduces
the deviations from Rouse behaviour observed in our simulations [59, 61].

These deviations have an impact on ¢;(¢) and the g dependence of the corresponding
relaxation times. Instead of the Rouse prediction go(t) ~ +/f for 1 « gy < Ré [2] we
[59, 61]—and also other authors performing simulations [32]—find the monomer MSD to
increase with a larger (effective) exponent (see also figure 21),

go(t) ~ 1™ with xp = 0.63 £0.03. (52)

The monomer MSD will determine ¢} (7) if the Gaussian approximation equation (44) applies.
This should be the case for g < ¢*. So we expect

In g} (1) ~ —g*" = 7K ~ g~ Fw¥-32, )

which appears to agree with the simulation data better than the Rouse prediction (51); cf
figure 15. (Note that neutron scattering experiments typically find smaller values for xo, i.e.,
0.4 < xp <0.57[47,48].)

Critique of the quantitative analysis. The previous sections presented a quantitative
comparison of the simulation data with the leading order results for the o and 8 relaxations
(section 3.3.1). At this point, it may be appropriate to pause and to comment on the strengths
and weaknesses of the analysis.

The chief advantage of the analysis is obvious. It provides detailed, otherwise unobtainable
quantitative information about the dynamics of the glass former (above 7;). Extracting the
g dependence of the relaxation allows for a comparison with the extensively studied hard
sphere system [142, 143, 146, 177]. MCT proposes the hard sphere system as the archetypal
example of a glass-forming liquid. The reason is as follows: different glass formers certainly
differ in their intermolecular interactions. But they all have an amorphous structure, being
characterized by a structure factor that is qualitatively similar to the hard sphere S(g). It is
S(g) and related quantities that entirely determine the dynamics, according to MCT. So, the
hard sphere system should be a simple, but pertinent representative for the class of glass-
forming liquids. Confronting the results known for this system with those obtained from a
simulated or an experimentally studied glass former helps to shape our understanding of which

17 In the simulations the influence of entanglements on the dynamics may be suppressed by allowing the chains to
cross. Then, Rouse-type relaxation is observed even for large N [381, 382].
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aspects of the relaxation may be related to the picture proposed from MCT and which of them
transcend the theory'8.

The main weakness of the analysis is that it hinges on an intricate fitting procedure. Three
(KWW analysis) or four (8 analysis) parameters have to be optimized simultaneously. In
practice, the range of validity of the asymptotic formulae, equations (20)—(31), is not known a
priori. Even if one uses the temperature nearest to 7., which appears to be free from ergodicity
restoring processes that the ideal MCT ignores, the distance to 7, may be not close enough to
allow for a precise determination of A [178]. In addition, we have to decide on the time interval
where the fit will be performed. The choice of this interval will—or at least can—influence
the numerical values of the fit parameters. At several instances, we pointed out that the KWW
fit suffers from that problem. But the same concerns also apply to the 8 analysis.

Both problems—the difficulty of determining A and the influence of the fit interval—are
known. They are discussed in the literature (see e.g. the comment and reply in [179, 180]), but
may be hard to avoid in practice [151, 178]. Let us give a case in point, our own analysis.

The analysis of the B8 process using equation (25) was guided by the idea that the initial
part of the plateau region should be describable in terms of the short time behaviour of the
correlator G(t) for ty < t K ty X teo. AS qb;‘(tco) = fq"C (equation (47)), our fit procedure
tends to place the nonergodicity parameter in the centre of the plateau region. This analysis
seems to be problematic for MD results. Recent simulation studies, comparing for the same
model the deterministic MD with an overdamped stochastic dynamics, reveal that the initial
decay of G(¢) can barely—if at all—be observed in MD simulations. It is largely hidden by
the microscopic transient (cf equations (41), (42)) [106, 107]. Thus, a 8 analysis of MD data
should not try to place 7., in the centre of the plateau region, but closer to the initial drop of ¢; (¢)
from 1. This implies that our results for ff are too small. A posteriori, this becomes evident
from figure 11. There the TTSP is still fulfilled for ¢,(¢) > £, an apparent contradiction to
equation (29). This inconsistency could have been avoided if the cross-check with the TTSP
had been done. So, information from the « relaxation is crucial for guiding the 8 analysis (cf
appendix A). A similar conclusion was also drawn in [178].

3.3.5. Quantitative comparison based on static input obtained from the simulation. Of
course, the uncertainties to be attached to the MCT parameters estimated from the previously
discussed fits—even if the fits are judiciously carried out—raise concerns that are hard to
dispel. An avenue around this problem would be to avoid the fitting altogether. In principle,
this is possible. MCT establishes a link between the equilibrium structure of a glass former,
encapsulated in S(g) and related quantities, and its dynamics. Not only do the parameters of
the asymptotic formulae (2, f7 etc) have precise microscopic definitions, but also the full time
dependence of e.g. ¢, (¢) may be calculated from the structure (outside the short time regime).
This opens the possibility for an ‘ab initio’ comparison between the theoretically predicted
and the simulated dynamics.

There is a powerful idea here, albeit one whose applicability is limited to systems for which
the theory has been developed and the required static input has been obtained with sufficiently
high precision. This restrictive condition has, up to now, allowed for a few applications only.
At present, they include a model for amorphous SiO; melts [181], a binary LJ mixture [149],
a hard sphere mixture [162], a model for ortho-terphenyl [160, 161], and a hard sphere(-like)
system [107]. Certainly, the potential of this approach has not been fully explored yet.

18 In this respect, the simulation results for cis—trans 1,4-polybutadiene, presented in figure 3, do not appear to fit
into the MCT picture. The chemically realistic version (CRC) of the model has the same intrachain structure factor
and collective structure factor as the model without a torsional potential (FRC). However, the dynamics of the two
models are different, the FRC model relaxing faster than the CRC model. It is challenging to see whether this apparent
contradiction to the structure—dynamics correlation proposed from MCT could be reconciled (or not) with the theory.
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Here, we will present first results of such an ‘ab initio’ comparison between the simulated
¢, (1) and the full solution of a recently proposed extension of MCT to nonentangled polymer
melts [176]. Before turning to this comparison we sketch the theory and the numerical tests
of some of its assumptions.

Theory. The MCT for nonentangled melts [ 176] rests on the conceptual framework developed
for simple liquids [23, 24, 139]. It also deploys collective density fluctuations to describe the
structural relaxation. However, the core variables are not the average density fluctuations (i.e.,

¢, (1)), but their (non-normalized) site-resolved counterparts (a,b =1, ..., N),
1
Fu(gq,t) = —(,oa (q,)*pp(q, t)) (n = total number of chains)
n
1 - : a b
=~ D~ exp{—iq- [r{ () —r}O)1} ). (54)

i,j=1

Appealing back to the notation employed in section 3.2 we denote by r{(¢) the position of
monomer a in chain i at time ¢. Furthermore, we see from equation (8) that the initial value
of Fu(q,1) is given by Fup(q,0) = Sap(q) = wap(q) + phap(q). Fup(q,t) thus comprises
intrachain (w,; (g, t)) and interchain (k,; (g, t)) contributions.

The function F,; (g, t) may be identified as the (a, b) element of the N x N matrix F(q, t).
By means of the Zwanzig—Mori formalism [119] an exact equation of motion for F(g, #) may
be derived [182]. Specified to the element F,;(q, t) it reads

N N t
O Fun(q, D)+ Y Qo (@ Fa(g, 0D+ / ' My (gt — )30 Fuy(q, 1) = 0, (55)
x=1 x=170

where
Q2 (q9) =q*v* S, (@) with v> = kgT/m(= T in our units); (56)

here Sc;' (g) denotes the (a, x) element of the inverse of the structure factor matrix S(g).
Equation (55) corresponds to the equation of motion of a damped harmonic oscillator whose
“friction coefficient’ M,, (g, t) depends on the full history of the motion of all monomer pairs
(a, x). The matrix M(q, t) is hence referred to as the ‘memory kernel’.

The remaining task is to derive an expression for M(q, ¢). It is that bit which cannot
be handled without approximations [23, 24, 139]. In the framework of MCT the memory
kernel is commonly split into a regular contribution and a ‘slow’ contribution: M(q,t) =
M (q, t) + M*°%(q, 1) [162].

The regular contribution is supposed to embody memory effects present in the normal high-
T state of the liquid (where M*°¥ is negligible). M™¢ is assumed to condition the dynamics
beyond the (deterministic) short time regime (equation (42)), to lead to a fast decay of density
fluctuations and to vary only weakly with 7 upon cooling. In this sense, it is ‘regular’. At
all T, M™# aggregates only contributions from rapidly fluctuating forces. Because no slow
relaxation can result from it, we may pose M"¢ (g, ) = 0 (see however the recent study [149]
in which the regular kernel was not dropped).

There must also be slow contributions to the fluctuating forces, which ultimately lead
to the kinetic arrest in a glassy structure. M®Y is supposed to contain them. We may
regard the memory kernel M(q, t) as a force—force correlation function [23, 24, 139]. In-
teraction forces involve pairs of particles (for pair potentials) or—transcribing this idea
to the level of collective variables—pairs of densities. So M*°Y should be express-
ible in terms of the average of the product of four density fluctuations, schematically
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(p(q1, )" p(q2,1)* (g3, 0)p(qy, 0)). The core approximation of MCT is now to replace this
four-point correlation function with a product of two-point correlation functions. Schemati-
cally again, (p(q1,1)*p(q2,1)*p(g3, 0)p(gs, 0)) ~ (p(q1.1)*p(g3.0)) (p(q2, 1)*p(qs, 0)) +
(3 < 4) 23,24, 139].

More precisely, the memory kernel is approximated by M,;,(q,t) =~ Mjll;’“’(q, 1) ~
MMC(q, 1) with [182]

2 N
v
Mg, = L3 / 0k [K2Car (K) ety (6) Foy (k. 1) Fop (. 1)
x,y=1

2m)* S (57)

+ kzpzcax (k)be(P)Fxb(kv t)Fay(ps t)]7

where p = g — k and p = n/V is the chain density (equation (7)). The memory kernel (57)
is formally identical to the MCT expression obtained for a N-component mixture containing
n particles of each component. The intramolecular constraints due to chain connectivity enter
this equation only via the Ornstein—Zernike relation for the direct correlation functions c,5(g)
(equation (14)).

Equations (55)—(57) furnish a system of closed equations for F(q, t), provided that the
matrices S(q) and c¢(g) are known. From a computational point of view, the solution is,
however, demanding; the equations are still of order N2, and N may become large. It is at this
point where the analysis of the static structure, presented in section 3.2, will help us to develop
further approximations.

(i) First approximation. Figure 6 showed that the equivalent-site approximation
(equation (15)) is well justified for the Bennemann model. So we insert c,5(g) = c(q) in
equation (57) and obtain

2 N
MMC(q. 1) = (;:)3 /d% {kfc(k)z[ 3 ny(k,z)}Fab(p,t)

x,y=1

N N
+ kzpzc(mc(p)[z Fop (K, r)} [ > Fuy(p, r)} } (58)
y=1

x=I

(ii) Second approximation. Equation (58) reveals that the equivalent-site approximation does
not suffice to simplify the problem. It is still of order N2. Progress is made if we invoke a
further approximation, motivated by PRISM theory. PRISM theory predicts that the site
dependent structure factor S,(g) can be expressed as

PRISM |:Z;],V] Wap(q)

N
Sy = Sy = S(q), 59
@) b; »(q) o) }(q) (59)

and our simulation furthermore suggests that the factor [ - ] is almost independent of a.

Thatis, S;(q) >~ S(q) (cf figure 16). Assuming that this static property also holds for the
dynamics, we may write

N
Fu(q, 1) =) Fup(q,1) = F(q,1). (60)
b=1

Equation (60) is an important intermediate result. It allows us to derive a closed MCT equation
for the average collective density fluctuations F(q, t), i.e., for

1 N
Fg.0 =~ D Falq, 1), (61)
a,b=1
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Figure 16. Comparison of the static structure factor S(g) (circles) and the site dependent static
structure factor S,(q) for @ = 1 (dashed line), @ = 2 (solid line) and a = 5 (dotted line). S,(q)
is defined by the first equality of equation (59). The simulation data for both S(¢) and S,(q) were
obtained at 7 = 0.47.

whose initial value is F(g,0) = S(g) (cf equations (54) and (11)). To this end, we sum
equation (55) over a and b and divide by N. Then, we insert equations (58) and (60). This
gives the following equation of motion for ¢, () = F(q,1)/S(q):

0y (1) + oy (1) + Q2 / de' my(t — ") oy, (1) = 0, (62)
0
where Q; = ¢v?/S(q) (cf equation (42)) and
1 Pm
my () ~ 5 f d3k[ (2n)3q45(q)5(k>5(p){q- [ke (k) +pc(p)]}2} D (1), (1) (63)

with p = ¢ — k and p,, = nN/V (equation (7)).
Equations (62) and (63) merit some comments:

(i) For large times, the inertia term, 8lz¢q (t), can be neglected. Then, QZ drops out and
so the relaxation of ¢, () at long times does not depend on the underlying microscopic
dynamics. For instance, it should be the same irrespective of whether the system evolves
according to Newtonian or Brownian dynamics and it should not depend on inertia
parameters. These predictions have been verified in recent simulations on simple glass
formers [106, 107, 183].

(i) Equations (62) and (63) are formally identical to those for monatomic liquids [142].
Polymer-specific effects, such as local stiffness of the chain backbone or chain length
N, enter the relaxation only via the direct correlation function, the structure factor and
the monomer density. These static equilibrium features fully determine the long time
dynamics of the melt.

(iii)) Equation (63) shows that the memory kernel contains the factor S(g)S(k)S(p). So, the
slow dynamics close to 7. should be mainly driven by wavevectors close to ¢g* [182],
because there, S(q) is largest and the strongest dependence on 7" occurs (cf figure 5).

Comparison with the simulation: first results.  The analysis [184] begins with the
determination of the critical temperature from equations (62) and (63). We refer to this
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Figure 17. Main figure: wavevector dependence of the nonergodicity parameter (NEP) ch
determined from ¢, () by means of fits of equation (46) to the simulation data (circles) and by
MCT calculations based on structural input from the simulation (solid line). S(g) obtained from
simulation at T = 0.47 (dashed line) and the extrapolated S(g) at TMCT ~ 0.277 (dash—dotted line)
are shown for comparison (the structure factors are multiplied by 0.1). The vertical arrows indicate
gc = 3.4 (maximum of Sc(q); see inset), and ¢g* = 6.9 (~ maximum of S(g); see figure 5). Inset:
plot of the collective structure factor of the centres of mass of the chains Sc(g) (equation (65))
versus ¢ for all temperatures simulated (solid lines). The dashed line shows the approximation
to Sc(g) according to PRISM theory [67]. The arrow indicates the position of a weak maximum
occurring in the simulated Sc(g) at gc >~ 3.4.

temperature as TMCT to discriminate it from the critical temperature TMP =~ 0.45 derived
through fits of the asymptotic MCT formulae (section 3.3.4). TMCT may be deduced from the
long time limit ¢, (t — o0) = f; which satisfies the relation

Ja
1-f,

The solution to this equation bifurcates at TMT. For T > TMT itis f, = 0, while £,(T) > 0
for T < TCMCT (cf equation (20)). From this feature, we obtain the critical nonergodicity
parameter via f, (TMT) = ff.

The technical procedure for turning this general strategy into a practical method is
described in [23, 24, 142] and has been applied to simulation results e.g. in [161, 169]. It
involves an iterative solution of equation (64) which proceeds from the ‘glass side” (T < TMCT)
toward TCMCT. The analysis is of course predicated upon having the corresponding static input
at hand. As long as TMCT lies in the range of temperatures for which equilibrated simulation
data are available, the required static input can be determined accurately. However, what if
TMCT turns out to be below the lowest equilibrated temperature? This problem occurred in
our analysis. In this case, one is inevitably faced with the task of determining the static input
by extrapolation from the liquid side. We utilized the simulated S(g) at T = 0.47 and 0.48
to carry out the extrapolation. (Due to its very weak dependence on 7 it was not necessary to
include the intrachain structure factor in the extrapolation; cf section 3.2.) The extrapolation
provides S(g) at lower T which is inserted in equation (64) to compute TMCT. The result is
TMCT ~ 0.277.

The need to resort to extrapolations is certainly less than ideal. The resulting S(g) may
be qualitatively wrong. Fortunately, this concern can be dispelled. Figure 17 depicts S(g)
from the simulations at 7 = 0.47 and the extrapolated S(g) at TMCT. The latter exhibits the
following features: comparing to S(g) at T = 0.47, the peak position ¢* is shifted to larger

= Fq({fk}) with mq(t) = -7:11 [¢q (t)] (64)
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wavevectors, the amplitude S(g*) is higher and the subsequent oscillations for g > ¢* are more
pronounced. These features agree with the trends observed at T > 0.47 (cf figure 5). One
can see this as testimony that the extrapolation was carefully carried out. No qualitative error
appears to be introduced. On the other hand, quantitative differences between the extrapolated
S(g) and the real S(g)—resulting from an analysis of equilibrated configurations at 7M“T—
cannot be excluded. To what extent are these uncertainties problematic? No definite answer
can be given at present for the polymer model studied. Related work on hard sphere systems
suggests that quantitative differences in S(g) may alter the theoretical value of the critical
point and the precision of the predicted f; MCT 107, 162]. But they appear to have only a
weak influence on the exponent parameter A (cf equation (24)) [107]. So we should expect the
uncertainties for TM" and f¢M<T to be larger than those to be attached to AMT.

Figure 17 compares the theoretical prediction for f, (TMCT) = f¢MCT with the simulation
results from [63] (cf figure 13). For g 2 ¢* = 6.9 we find a high degree of accord between
theory and simulation. This agreement, particularly for ¢*, is an important argument in favour
of the theoretical approach because it is the intermolecular packing at wavelengths ~1/g*
which mainly drives the slowing down of the structural relaxation as the melt is cooled toward
T.. On the other hand, the agreement between theory and simulation is not good for g ~ 4.
The theory underestimates f;° and does not reproduce the shoulder present in the simulation
data.

This disagreement is a possible cause of the finding < TMP. Apparently, there are
slow modes around g ~ 4 which are not captured by the theory. These modes may couple to
the dynamics of other wavevectors, leading to a slowing down of the structural relaxation in
the simulation. The only way in which the theory can cope with this additional coupling is to
strengthen the cage effect. That is, to increase the first peak of S(g). This requires cooling to
lower T and, thence, a smaller critical temperaturelg.

If this is so, how could one then introduce the missing coupling into the theory? The
inset of figure 17 suggests an avenue. It could be related to the packing of the centres of mass
(COMs) of the chains. The shoulder in f7 occurs close to a weak peak present in the static
structure factor Sc(q) of the COMs at gc = 3.4. By analogy to section 3.2, we define Sc(q)
as

MCT
Tc

1/ <& .
Sc(q) = ;< Z exp[ —ig- (R — Rj)]>’ (65)

i,j=1

where R; denotes the COM position of the ith chain in the melt. One possibility for improving
the theory could thus consist in including the COM as a further interaction site (see [160] for
an implementation of this idea in related work).

However, no improvement was found in our case. The reason may be that, unlike S(g),
Sc(q) is practically independent of 7" and already close to 1 for g¢ (cf figure 17 and [67]).
Viewed from the perspective of MCT, where the 7" dependence of the static structure triggers
the glassy slowing down on cooling, one is led to conclude that Sc(¢) is not a pertinent variable.
The static coupling between the COMs is too weak to make an impact on the glassy dynamics

19 The underestimation of TCMCT can have yet another origin. The theory utilized the (commonly employed)
‘convolution approximation’ [24]. This approximation replaces the structure factor S3(g, k, p) for triplets of
monomers by the product S(g)S(k)S(p). The replacement appears to be well justified for simple glass formers
[181, 383], but not for structurally more complicated ones, such as ortho-terphenyl [161] and silica [181]. In our
model we find, analogously to the simple liquids case, that the convolution approximation works quite well, except at
intermediate g—that is, just in the interesting region close to ¢* [67]. Unfortunately, it is hard to obtain statistically
sufficiently accurate results for S3 in order to estimate to what extent these deviations could be important in a mode-
coupling calculation.
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Figure 18. Comparison of the simulation data for ¢, (¢) at ¢ = 6.9 and T = 0.47 (circles) with
various MCT predictions. (a) The solid line is the o master curve; the filled circles depict the
solution including both the o and B processes for e = (TCMD -1/ TCMD = —0.046 (TCMD ~ (0.45).
The horizontal dotted line shows the MCT prediction for the nonergodicity parameter f(; MCT
All theoretical results are based on the static input from the simulation. (b) The exact short time
expansion from figure 12 is included (dash—dotted line). For longer times the simulation data
are compared with an MCT fit using only the factorization theorem (solid line) [63], an MCT fit
including also the next-to-leading order correction to the factorization theorem with short time
coefficients calculated from the long time coefficients (dashed line) [63] and the MCT ‘o + 8’

prediction from panel (a) (filled dots). The nonergodicity parameters from the MCT fit, ch fit and

Iy MCT from panel (a) are shown as horizontal dotted lines.

(see also [161] for a related discussion). At present, how to improve the theory around ¢ ~ 4
remains elusive.

On the other hand, MCT and simulation closely agree with one another for ¢ 2 ¢*. In
the following, we therefore focus on ¢* for analysing the decay of ¢, (¢) in more detail.

Figure 18(a) compares the simulation results for ¢, (¢) at g* = 6.9 and ' = 0.47 with
MCT predictions in the 8 and & regimes. The static input at TMCT suffices for computing
the shape of the @ master curve (equation (26)). The master curve depends on the scaled
time f = 1/t = (t/t) |o]”. As the MCT calculations yield o and y (equations (21) and
(23)), the only unknown is the matching time #y. To eliminate #, we plot in figure 18(a) the «
master curve and the simulation data versus ¢/ r;. Here, r; denotes the relaxation time defined
independently from the o master curve and the simulation data via the condition ¢, (t,+) = 0.1.
Figure 18(a) reveals that, matching theory and simulation at one point—for ¢, = 0.1—suffices
for describing the o decay of the simulation data over about two decades in time.

To extend the description to shorter times we also have to take the 8 process into account.
This implies solving the MCT equations at a finite distance, ¢ = (7. — T)/T., from the
critical point [24]. In figure 18(a) we utilized the distance corresponding to the simulation
data, ¢ = —0.046. The inclusion of the 8 process extends the description for about one decade
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to shorter times. For still shorter times, eventually belonging to the microscopic regime
(t/ty S 10~*), deviations are expected because the theory neglects the regular kernel (see
the discussion under the heading ‘Theory’ in section 3.3.5). By the same token, it is also not
fully adequate in the regime of crossover between the microscopic transient and the 8 process.
The dynamics in the crossover regime (107 < t/7,» < 1073) is affected by the simulation
method; it depends e.g. on whether MD or a stochastic dynamics is employed (cf figure 3
of [106, 107]) and also on inertia parameters [183].

Figure 18(b) recapitulates the results from the comparisons between simulation and MCT
presented so far. The figure depicts the § fits to the simulation data, with and without corrections
to the factorization theorem (cf section 3.3.4), and the just discussed analysis based on the static
input. One clearly sees that in the 8 regime the two analyses yield descriptions of comparable
quality, especially if corrections to the factorization theorem are taken into account. There
is, however, one argument which pleads for the analysis based on the static input. It predicts
a nonergodicity parameter f,’ MCT that is larger than the fit result Iy fit, If we go back to
figure 11, we now find that f7 MCT Jijes above the o master curve, no longer violating the TTSP
in contrastto f, fit_ Figure 18(b) thus reveals the intricacies of the 8 analysis via the asymptotic
formulae. For distances e, typical of simulations, the choice of a too small value for f; fit may
be compensated by weaker stretching, i.e., by a larger von Schweidler exponent b (cf table 1).
A similar conclusion was also drawn in [178], stressing the importance of including features
from the « relaxation to guide the 8 fits (cf appendix A).

3.3.6. Influence of the thermodynamic path: a case study. A key prediction of MCT is
that the low 7' dynamics is conditioned by the equilibrium properties at the critical point.
The critical point is the thermodynamic state of the liquid at 7.. For the Bennemann
model this state is fully specified—as for any one-component, one-phase system—by two
intensive variables. We may choose temperature and pressure. For p = 1 the critical
point is located at p = p. = 1,7, ~ 0.45. This corresponds to the monomer density
Pm(Pe, Te) = Ppme = 1.042.20 We may invert the last equation, 7, = T.(pc, Pmc). This
relation suggests the following interpretation: performing a constant-pressure simulation at
Pc or a constant-volume simulation at pp,. should yield the same critical temperature and so,
according to section 3.3.1, also the same dynamic features, in particular the same value for A
(equation (24)).

We tested this idea in [60] by comparing simulation results at constant pressure (p = 1)
with those at constant volume (p,, = 1.042). Within the numerical uncertainties, we do
indeed find the same T, and A. Figure 19 provides an example. Its main part depicts the T
dependence of the relaxation times associated with ¢; (r) and the second Legendre polynomial
of the orientational correlations of the end-to-end vector R, (7):

2 1 Re (t)
dea(t) = 1 [( e - eO]) - } e(t) = === (66)
=0 =3l F)=5 X0]
Figure 19 reveals that there is a 7" interval where the relaxation times increase as
(1) (T = To)7, (67)

20 At p =1, T. =~ 045 and pye =~ 1.042. For other pressures different values for the critical temperature and
density are obtained. Nevertheless, we found that I'c = pmc T.,” % is, 0 a good approximation, constant for all
pressures studied (Te = 1.27 + 0.02) [60]. T o pn, T~ /* is the only relevant parameter needed to fully specify
the thermodynamic state of a 3D soft sphere system whose repulsive interaction is proportional to =2 [119]. This
finding illustrates the important role that excluded volume interactions play close to the MCT critical point. The
same observation has not only been made for glass-forming soft sphere [384] or LJ systems [169], but also e.g. in
experiments [385] and simulations [160] of ortho-terphenyl.
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Figure 19. Temperature dependences of different relaxation times, obtained from simulations at
constant pressure (open symbols) and at constant volume (filled symbols). The constant-pressure
simulations were performed at p = 1, leading to the density py, = 1.042 at 7. = 0.45. We
utilized this density in the constant-volume simulations. r; and tg, are the relaxation times of the
incoherent scattering function ¢; (1) (equation (40)) and of the second Legendre polynomial of the
normalized end-to-end vector ¢g> () (equation (66)), respectively. The relaxation times are defined
by the condition ¢y (7x) = 0.3. The constant-pressure data are multiplied by an arbitrary factor so
as to optimize the superposition with the constant-volume results. (The factors are: 14.3 (E2), 16.5
(g =3),18.7 (¢ = 6.9) and 19.8 (¢ = 9.5).) The dashed lines indicate the y values obtained from
the MCT fit to the B regime (yp i = 2.09; section 3.3.4) and from the ‘ab initio’ MCT analysis
(ymcT = 2.406; section 3.3.5). Inset: values of y determined from the simulations at p = 1 (open
symbols) and at py, = 1.042 (filled symbols) via fits to equation (67). On the abscissa, we quote the
quantities from which y was calculated (E1 and E2 = the first and second Legendre polynomials of
the normalized end-to-end vector, B2 = the second Legendre polynomial of the normalized bond
vector, 3 < ¢ < 12 = ¢} for these ¢ values). The horizontal dotted lines indicate ymcr, ¥ fic and
the value obtained from a fit to the temperature dependence of the diffusion coefficient of a chain
(yp = 1.84). This figure is adapted from [60].

with T, and y being the same for the two thermodynamic paths. This agrees with the expectation
from ideal MCT (cf equations (23) and (27)). However, the figure also reveals two points of
disagreement, the first expected, the second problematic.

First, the power law (67) does not apply for all 7. Both at low and at high temperature
deviations occur. These deviations from the ideal behaviour are expected (see the discussion
at the end of section 3.3.1): at high T the asymptotic formulae are no longer valid; very close
to T, ergodicity restoring processes, missing in the ideal theory, become dominant.

Second, if we fix T.—as is done in figure 19—and determine y by including in the fit the
maximum number of temperatures compatible with equation (67), we find that y depends on
the quantity under consideration (inset of the figure). This dependence is unexpected within
MCT and poses a problem. More precisely, the inset of figure 19 shows that y decreases
with increasing length scale, eventually converging toward yp, the exponent obtained for
the diffusion coefficient of a chain [64]. The observation that relaxation processes on large
length scales appear to present a weaker slowing down than those on scales ¢ = ¢* is not
particular to the polymer model studied. Itis also found in simulations of simple glass-forming
liquids [107, 162, 185].
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A feature that is particular to polymers is the correlation functions associated with
reorientations (of parts) of the chain backbone. Figure 19 provides examples in terms of
the first or second Legendre polynomials of the bond or end-to-end vectors. When analysing
the corresponding relaxation times via equation (67) we find y values that agree, within the
error bars, with yp. How can we understand that the orientational dynamics of a chain is
related to density fluctuations in the small wavenumber limit (cf equation (49))?

Polymer physics suggests a clue to the answer. The dynamics of nonentangled chains
is usually discussed in terms of the Rouse model (see the heading ‘Interpretation via the
Rouse model’ in section 3.3.4 or [2]). The basic variables of the model are the ‘Rouse
modes’, the cosine transforms of the position vectors to the monomers of a (tagged) chain
s, {rdta=1,.. .~ [186],

N a—Hpm
Xp(t)z%;r?(t)cos% (p=0,....N—1). (68)
In the framework of the Rouse model the modes obey (X, (¢) - X, (0)) o §,,,. We verified this
orthogonality for the Bennemann model [61]. This feature suffices to show that orientational
correlation functions, such as the first Legendre polynomial of the bond and end-to-end vectors,
may be expressed as a superposition of C, (1) = (X, (t) - X,(0)) for p > 0 [2]. On the other
hand, C),(z) is related to the density correlator of a single chain,

Fayta.0 = (exp|~ig - [ri0) - r2@)]}) (69)
through
N _1 _1
C,(t) = Lz Z (rg(t) . rsb(O))cos (a ]é)pn cos ® 1\27)p7T
a,b=1
T RT3, (a—Dpr  b-YHpn
= ,}1—% [m a;1 [? F).(q, t)j| cos N cos N j| (70)

This completes our line of reasoning. As the relaxation of the Rouse modes is determined by
the small ¢ limit of single-chain density fluctuations, we expect related orientational correlation
functions to be so too.

3.4. Spatially correlated dynamics: analysis of clustering phenomena

The differences between the simulation and MCT, discussed in connection with figure 19,
may be interpreted in another way. MCT predicts that all relaxation times—as well as the self-
diffusion coefficient D and the viscosity »—have close to 7, the same temperature dependence
as t, (equation (27)). Figure 19 indicates a violation of this coupling to one underlying
timescale 7/. The problem is recapitulated in figure 20. While incoherent and coherent
relaxation times are proportional to one another on the local scale ¢*, the proportionality
breaks down on cooling toward T, as g decreases; the corresponding relaxation times prove to
be smaller than expected. Figure 20 bears a conspicuous resemblance—albeit for 7 > T.—to
the breakdown of the Stokes—Einstein relation D ~ T/n often found in experiments near
T, [188, 189] (for a comparative discussion of experimental results see e.g. [18]; for recent
results on nonentangled polystyrene melts see [187]).

A popular explanation of the different 7 dependences of D and T /n invokes the
existence of spatially heterogeneous dynamics (‘dynamic heterogeneity’; for general reviews
see [190-193]; for a discussion in the context of chemically realistic polymer models see [32]).
The term ‘dynamic heterogeneity’ circumscribes the idea that a glass former near 7, contains
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Figure 20. Plotof D (circles), 1/ r;* (squares) and 1 /gy (crosses) versus the collective o relaxation
time gx. r;* and g are taken from figure 19; 7+ is taken from [64]. The highest (T = 0.7)
and lowest (7 = 0.46) temperatures are shown by arrows (remember that 7. ~ 0.45; the other
temperatures are (from left to right): 7 = 0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47). The data for l/r;*
and 1/7g; are divided by some factor (= 494 for r{;*, = 4.85 for tgp) so that they agree with D
(=0.00105) at T = 0.7. The solid line indicates the slope —1. If one assumes 7« (T) ~ n(7T'), the
results presented here are strikingly similar to those obtained near 7, for nonentangled polymer
melts (cf figure 9 of [187]).

aggregates (‘subensembles’) of particles possessing an enhanced or a reduced mobility relative
to the average. One should not envisage these aggregates as static objects; they fluctuate
throughout the system with a finite lifetime. Particles that are ‘fast’ at some time will eventually
become ‘slow’ and vice versa. This must be so because the liquid is ergodic above Ty:
if a particle that was initially in a ‘fast region’ always stayed there, the time average over
its trajectory would not agree with the ensemble average over all particles, thus violating
ergodicity.

Viewed from the perspective of dynamic heterogeneity the breakdown of the Stokes—
Einstein relation is interpreted in terms of the different manner in which the mean square
displacement (and so D) and the stress correlation function (and so ) sample the relaxation time
distribution associated with spatially heterogeneous dynamics. The mean square displacement
should be dominated by the more mobile particles, while the slow regions should mainly
determine the relaxation of the stress correlations. Since the width of the relaxation time
distribution is expected to increase on cooling, so does the disparity between fast and slow
regions. This may lead to different 7 dependences of D and T /1.?!

The similarity between plots of the violation of the Stokes—Einstein relation and figure 20
suggests looking for spatially heterogeneous dynamics in our polymer model. The method
used to broach this problem computationally has been inspired by experiments. In the research
on dynamic heterogeneity, experimental techniques have been developed which allow one to
select subensembles of fast or slow particles and to monitor their time evolution [190, 191, 193].
We employ a similar filtering technique here, focusing on spatial correlations of highly mobile
monomers [66, 194]. The analysis closely follows the work of [195-197].

21 Whether a broad relaxation time distribution must necessarily lead to a decoupling of the temperature dependences
of D and T'/n is still a matter of debate (see e.g. [191]). As an aside, MCT also predicts a significant broadening of
the relaxation time distribution for T — 7. [177] without entailing a violation of the Stokes—Einstein relation.
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Figure 21. Various dynamic quantities for the Bennemann model at 7 = 0.46. In panels (a)—(c),
the vertical dotted lines at # = 0.61 and 86.43 roughly indicate the time window of the MCT B
process. They are taken from figure 9. (a) Mean square displacement (MSD) of all monomers
go(t) versus ¢. The behaviour in the ballistic (~¢%) and the polymer-specific regimes (~1°%3; cf
equation (52)) are shown by solid lines. The horizontal dashed lines depict 6r52C (the Lindemann
localization length rgc >~ 0.095), the radius of gyration Ré (=2.09), and the end-to-end distance

RC2 (=12.3). (b) Non-Gaussian parameter of the monomers o (¢) (equation (73)) and g4(t)/go(¢)
versus 7. g4(t) is the MSD of the end monomers. (c) Number-averaged string length (s(¢)) and
weight-averaged cluster size (n(t))y versus t. (n(t))w is normalized by its initial value (n(0))w
(data reproduced with permission from [194]). The arrows indicate the peak times of (n(t))w
(3 = 65.85) and (s(1)) (t™* = 236.26). This figure is adapted from [66].

str

Selecting mobile monomers: motivation. Studies of spatially heterogeneous dynamics in a
supercooled binary LJ mixture [195-197] identified the ‘mobile subensemble’ as the set of
all particles that move further than distance r* in time t*. More formally, the fraction ¢, of
mobile particles is defined by

o0
qu:/ dr 47 r’Gy(r, 1), (71)

where G(r, t) is the self-part of the van Hove correlation function (equation (33)).

To choose the parameters r* and t* the following criterion was employed: ¢* was taken as
the time where the non-Gaussian parameter o, (¢) is maximum, and r* as the distance beyond
which the tail of G(r, t*) is larger than that of the Gaussian approximation [119]

G * 2 3]’2
N I Rl "

go(t) = ([r;(t) —r; (0)]?) is the mean square displacement (MSD) of a particle. Why are these
choices for r* and t* expedient?
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The non-Gaussian parameter o (f) compares the mean quartic displacement of a monomer
to the square of go(¢). It is defined by [119]

3{lri(1) = (O)])

5 8o(1)?
This quantity has a lower bound o, (f) > —2/5 because ([r;(t) — r; O > go(r)?, and
vanishes if the displacements are Gaussian distributed. A negative value of «;(f) implies that
a monomer moves on average less far than expected e.g. from diffusive Brownian motion. A
positive value, on the other hand, indicates that the monomer moves further than a Brownian
particle in the same time. A large value of «»(¢) is thus a good indicator of enhanced mobility
relative to ordinary diffusion.

Figure 21 depicts a,(f) and go(¢) for the Bennemann model at 7 = 0.46 [66]. At short
times, the monomers move ‘ballistically’: go(¢) o< ¢ (equation (43)), G(r, t) is Gaussian [119]
and so a»(t) = 0. The regime of ballistic motion is succeeded by a ‘plateau regime’. There
go(t) increases only slowly with time; the MSD is of the order of 10% of the monomer
diameter. This reflects the temporary caging of a monomer by its neighbours. The plateau
regime may thus be identified with the MCT g process (see section 3.3.2). In this regime,
a (1) continuously increases toward a maximum. The maximum occurs at time t* which is
located in a time interval where the monomers, on average, begin to leave their cages (late
B/early a process). For longer times, a, () decreases again and go(¢) ~ % (equation (52)).
This subdiffusive behaviour can be attributed to chain connectivity (see the discussion in the
paragraph starting at the heading ‘Interpretation via the Rouse model’ in section 3.3.4). Chain
connectivity dominates the monomer dynamics until the MSD becomes comparable to the
chain size, go ~ Rg. Then, final diffusion sets in: go(¢) o ¢ (equation (50)), G(r, t) is again
Gaussian [119] and so a»(¢) = 0.

Figure 21 demonstrates that o, (#) is positive—this feature may be predicted
theoretically [143] and is often observed in simulations [47, 155, 170, 173, 174, 198] and
experiments [199-201] of glass-forming liquids. The monomers in the cold melt close to 7
thus move substantially further than expected from purely diffusive dynamics, particularly at
the peak time 7*. This suggests choosing ¢* as the time to select mobile monomers.

The enhanced monomer mobility near #* cannot be attributed to chain ends. In the time
interval where o (¢) is large, the mean square displacement g4(¢) of the end monomers closely
agrees with go(¢) (figure 21(b)). Only for t > t*, where o, (¢) is small again and go(¢) is
dominated by chain connectivity, do we find g4(f) > go(¢). In this time regime, the inequality
‘ga > go’ is predicted by the Rouse model [2] and expected to persist up to the diffusive regime
(see [66, 194] for a fuller discussion).

The criterion for selecting ¢* rests upon a comparison with Gaussian behaviour. The same
procedure should be employed to define r*, whence the idea of comparing G(r, t*) to the
Gaussian approximation G (r, t*) (figure 22) and defining r* as the crossing point of G (r, t*)
and Gg’(r, t*) for large r.

a(t) = ~1. (73)

Selecting mobile monomers: final definition. If these choices for * and r* are inserted in
equation (71), the fraction of mobile monomers is found to be 6.2% < ¢, < 6.8%, depending
on temperature [194]. Apparently, ¢, varies only weakly with 7". So, it appears appropriate
to fix an intermediate value ¢, = 6.5% for all temperatures.

However, once we decide to fix ¢, we can not only do this for all 7, but also for all times.
That is, we ‘select a dynamically distinguishable subensemble’ [190] of mobile particles by
ranking the scalar displacements p;(t) = |r;(t) — r;(0)] of all monomers i at time ¢ and
choosing the 6.5% with the largest ;.
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Figure 22. Comparison of the self-part of the van Hove correlation function G(r, t*) with the
Gaussian approximation Gg(r, t*) (equation (72)) at 7 = 0.46. t* = 109 is the time at which « is
maximum (figure 21). Two vertical dotted lines at 1} = V6re = 0.2337 and r* ~ 0.6 are shown.
Compared to Gg(r, t*), the real dynamics of the cold melt favours displacements that are either
smaller than rj or larger than r*. While r* serves as a threshold for choosing mobile monomers
(having r > r*), the enhanced probability, relative to Gg’(r, t*), of finding r < r; illustrates the
difficulty amonomer has in exceeding the distance ry (see the discussion under the heading “Theory’
in section 3.3.5). The latter feature was also nicely demonstrated for a binary LJ mixture by means
of an analysis of mean first passage times [202].

String-like motion and clusters of mobile particles. Figure 22 reveals that, even at ¢*, the
majority of the monomers has moved less than 10% of their diameter—they are effectively
jammed. In a melt, whose density is ~1 (no free space) and in which most monomers move
very little, large displacements, comparable to the monomer size, can only occur if these mobile
particles are close in space and assist their neighbours when they attempt to move (‘dynamic
facilitation’ [203-205]). We thus expect to find clustering and spatially correlated motion
of mobile monomers in the late §/early « regime. This expectation is borne out. Here we
provide a brief survey of these dynamic features, focusing on ‘string-like’ displacements and
clusters of mobile particles. Further details may be found in [62, 66, 194] (see also [192] for
a comparative review of dynamic heterogeneities in model glass-forming liquids and polymer
melts).

‘Clusters’ are defined as aggregates of mobile monomers that reside in each other’s first-
neighbour shells—the first-neighbour shell comprises all monomers within the distance of
the first minimum of the pair distribution function (r = 1.5; figure 10) [194]. Work on
glass-forming binary LJ mixtures [196, 197] further reveals that the clusters are composed of
smaller objects called ‘strings’. The strings are quasi-one-dimensional paths formed by mobile
particles that replace one another as they move. To decide whether monomer i forms a string
with monomer j we employ the following criterion [66]:

LT e el <8) (i@ =i O] (74
That is, i forms a string with j if the position of j at time ¢ (r;(¢)) is within a radius § of the
initial position of i (r;(0)) and furthermore if |r;(f) — 7; (0)] is the shortest of the distances of
all monomers i which also satisfy the § criterion. In practical applications, we mostly choose
6 = 0.55; all results to be presented employ this choice (see [66] for a fuller discussion).

It may be evident that neither the strings nor the clusters are monodisperse. At any time
and temperature one should expect a distribution of string and cluster sizes. Let Py (s(7))
denote the probability of finding a string of s monomers (‘string length’) at time 7. Similarly,
Py (n(1)) denotes the probability of finding a cluster comprising » monomers at time #. From
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these probability distributions different averages may be calculated. For the strings, it was

mainly the number-averaged string length (s(¢)) that was studied [66], for the clusters, the

weight-averaged cluster size (n(t))y [194]. These averages are defined by
(o) o) 2

(s)) =Y sOPu(s)  and (o), = Z";‘ () Pau(n(t))
= D oney (1) Pau(n(1))

These quantities serve to characterize the transient nature of the strings or clusters at

temperature 7.

Figure 21(c) depicts (s(¢)) and (n(t))y at T = 0.46. Qualitatively, the two quantities
behave in the same way. They ‘grow’ and ‘shrink’ as ¢ increases, exhibiting a maximum for
times close to #*. This demonstrates that temporary clustering and string-like processes of
replacement of mobile monomers develop in the 8 regime and are most prominent when the
monomers begin, on average, to leave their cages.

The possibility of string-like motion was suggested at the end of section 3.3.2; its extent,
however, could not be quantified there. Here we see that the average string length is small.
At 13 when the strings reach their maximum size (figure 21), we find (s(z3**)) ~ 1.9; the
corresponding weight average is (s (15" ))w ~ 3 [66]. Typically, one monomer thus replaces
one of its mobile neighbours.

A major contribution to this correlated motion results from chain connectivity.
Figure 23(a) illustrates this point. The figure shows the temperature dependence of the ratio
(Sseg (1357)) / (s (2557%)), where (s5e¢ (1337)) is the number-averaged string length of contiguous
segments of mobile monomersin a chain at time 7;**. Although this ratio decreases on cooling,
suggesting that replacements by nonbonded neighbours become more frequent, we find that
near 7 still about 70% of all strings consist of contiguous segments of mobile monomers along
the backbone of a chain. Clearly, a monomer tends to replace one of its bonded neighbours.
But this does not imply that mobility is localized on a few chains. If this was the case, (Seg)
should be of the order of N; yet, it is much smaller. We find (sge (25°)) A~ 1.3. This excludes
a relaxation scenario in which mobile monomers are connected to each other and slide along
the chain backbone.

The aforementioned difference between the number average (s(7;3**)) and the weight
average (s(15*))w points to a polydispersity of the strings; we expect to find a (broad)
distribution of string lengths. Figure 23(a) depicts the probability distribution Py (s) of finding
strings of length s at time ¢;** (T') for different temperatures. While most strings are of modest
size, irrespective of T, large strings become more frequent as 7" approaches T, from above.
The large s behaviour of Py (s) is well approximated by an exponential

(75)

1 s
Py (s) ) exp( (s)) . (76)
This exponential form suggests an analogy, first proposed in [196], between strings and
equilibrium polymers (for a discussion of equilibrium polymers see e.g. [206, 207]).
Equilibrium polymers are systems in which the bonds between monomers are not stable. At
any instant, they may cleave and reform reversibly, allowing the polymers to self-assemble into
chains of different length. In chemical equilibrium, a melt of these self-assembling polymers
has an exponential distribution of chain lengths (provided that the chains are large) [206, 207].
Coming back to our case, the mobile monomers also self-assemble into (small) chains and
the dynamically created bonds can break and recombine at any instant. This similarity to
equilibrium polymers may rationalize our finding that Py, (s) is close to an exponential [66].
In contrast to Py, (s), the probability P, (n) of finding a cluster of n mobile monomers is

not exponential. Figure 23 shows Py (n) at time £}* when (n(t)),, is maximum (cf figure 21).
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Figure 23. Probability distributions of the string length Pg;(s) (a) and of the cluster size Py, (1)
for different T. Py (s) and Pey(n) are calculated at the times 7™ and #]%* where (s) and (1),
respectively are maximum (cf figure 21). In panel (b), the solid (grey) line shows a power law
fit Pey(n) ~ n~" with T = 1.62. The inset of panel (a) shows the ratio (sseg (t5,")) /(s (t55™))
versus T — Te. ({Sseg) is the mean string length of contiguous segments of mobile monomers in
a chain.) The inset of panel (b) compares the T dependences of (s(#;g"™)) and (n(133*))w. The
data for P, (n) and (n)y, are taken from [194] (reproduced with permission). Part (a) is adapted
from [66].

On cooling toward T large clusters appear more frequently, and the cluster size distribution
is apparently well described by a power law, possibly supplemented by an exponential cut-off
[194]

1
Pau(m) ~ — exp<— no’zT)) (with T ~ 1.62). a7

The exponential cut-off may be due to finite size effects; the largest clusters comprise n ~ 65
monomers, i.e., roughly 6.5% of the total number of monomers in the simulation box (see [194]
for further discussion of this issue).

Summary and discussion. The analysis presented above deploys a filtering technique to
select at any time and temperature the most mobile monomers and explores their spatial
correlations. In the temperature regime above T, where the two-step relaxation clearly emerges
(0.46 < T < 0.7; cf section 3.3), we find the following results:
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(i) Mobile monomers form clusters and tend to follow each other in quasi-one-dimensional
paths (‘strings’).

(ii) Different monomers can be mobile at different times [66]; there is thus no permanent
‘phase separation’ between regions of high and low mobility.

(iii) Thus, spatial correlations between mobile monomers are a dynamic phenomenon. They
develop in the B regime, are most pronounced for times when the monomers, on average,
leave their nearest neighbour cages and disappear again on approaching the diffusive
regime. In the late B8/early o regime the clustering of mobile monomers and string-like
motion is not dominated by an enhanced mobility of the chain ends [66, 194].

(iv) The average cluster and string sizes are small, not exceeding a few monomers. On the
other hand, these dynamically formed aggregates are fairly polydisperse; large clusters
or strings appear, albeit with low probability??. Because the largest clusters observed are
comparable in size to the total number of mobile monomers, finite size effects cannot
be excluded [194]. Whether the truncation of the largest clusters by the system size
really perturbs the structural relaxation of the glass-forming melt is not clear. Work on
binary LJ mixtures suggests that a system of about 65 particles already exhibits bulk-like
diffusion [208]. The truncation in such a small system will be much more pronounced
(for further discussion of this issue see [209]). Furthermore, a study of a one-component
glass-forming liquid employing a simulation box which is about three times larger than
our system confirms the results found here [210].

(v) Mobile monomers tend to replace their bonded mobile neighbours. Chain connectivity
in our model thus provides a pathway, not present in simple glass-forming liquids, for
string-like motion. However, this polymer-specific spatial correlation is of short range. It
does not lead to a ‘mobilization’ of whole chains, i.e., to a sliding of the monomers along
the chain backbone, at least for T 2> Tt.

Critique of the analysis. There is much to commend an analysis of spatially heterogeneous
dynamics in focusing on highly mobile particles: it is conceptually simple; it is versatile—
it may be implemented for any (simulated) structural glass former; and it is instructive. In
addition to our polymer model, this analysis and variants thereof have been applied to binary
LJ mixtures [195-197, 209], a glass-forming one-component liquid [210] and a model silica
melt [211, 212]. Nevertheless the analysis appears less than ideal in at least two respects. We
discuss them in turn.

First, it focuses on the most mobile particles. These particles only represent a small
fraction, typically about 6%, of the total number of particles present. What are the features
of the remaining ‘slow’ particles? This question was addressed through different approaches
for several model glass-forming liquids above 7 [197, 213-215]. We do not attempt to be
exhaustive here in presenting the results of these studies. We rather discuss one example.

For a binary LJ mixture, Donati ef al explored spatial correlations between the 5% least
mobile particles—those with the smallest displacement in time /—in a manner analogous to
the analysis described above [192, 197]. The least mobile particles also cluster. The structure

22 A detailed analysis of the mechanism of string-like motion was performed for a one-component glass-forming
liquid in which the particles interact via the Dzugutov potential [210]. The main finding of this work is that it would
be oversimplified to visualize every string-like motion as a coherent replacement process in which all particles move
simultaneously. Such a coherent replacement typically occurs only in small strings or in subunits (‘microstrings’) of
large strings. This cooperative motion is thus limited to small length scales. For these large, noncoherent strings,
individual mobile particles or microstrings trigger the motion of other parts of the string. However, for most of these
noncoherent strings, this ‘dynamic facilitation’ does not occur in a sequential, but rather in a random fashion: an
ordered sequence of replacements is disrupted by one or more particles.
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of these clusters is more compact compared to that of the mobile ones, their size is essentially
T independent and the probability of finding an immobile particle close to a mobile one is
depressed with respect to static pair distribution function (‘correlation hole’). No obvious
correlation between these slow particles and the local density was found. There appears,
however, to be a correlation between the mobility of the particles and their potential energy,
large potential energy being associated with higher mobility.

The connection between the structural relaxation and the potential energy—more precisely
the potential energy landscape (PEL)—was investigated also for a binary LJ mixture by
Biichner and Heuer [213]. Atlow T the system may temporarily reside in the basin of attraction
of a few, adjacent minima of the PEL (cf appendix B). While visiting these minima over and
over again, relaxation is slow; it becomes fast if the system is not restricted to such a valley
of adjacent minima. The macroscopically observed dynamics of the system results from the
time average along this trajectory through configuration space.

There is a second issue of our analysis, which may appear problematic. The analysis
hinges on the identification of a suitable fraction of mobile particles. There is some latitude
in the definitions of what a ‘suitable fraction’ (typically 5%—8% [194]), a ‘mobile particle’
(see e.g. [197]) and a ‘string’ [66] really are. This freedom may be undesirable. It would thus
be advantageous to avoid the filtering of kinetic subensemble and to look for an alternative,
ensemble-averaged diagnostic of dynamic heterogeneities. Experiments suggest that higher
order correlation functions should be employed for this purpose [190, 193, 217]. An example
is provided by the following ‘displacement—displacement’ correlation function:

gu(r,1) = (t) <22m(r>u,(r)a —[r;(0) —ri(0>])>, (78)
i=l i#j

where w;(t) = |r;(t)—7;(0)] is the scalar displacement of monomer i in time ¢ and p,, = M/V
(M = nN) the monomer density (equation (7)). This function depends on four ‘points’ of
information—the initial positions of monomers i and j, and their locations at time ¢; g, (v, t)
measures spatial correlations between the displacements of two particles which are initially a
distance r apart. Such displacement correlations were studied in binary LJ mixtures [216,218],
in hard sphere and hard disk systems [219] and in our polymer melt [62] (for related work see
also [220]). At early and late times the displacements of monomers i and j should decouple.
One then expects g, (r, t) to agree with the pair distribution function g(r). However, it would be
consistent with the previous results if a pronounced coupling of displacements occurred when
the monomers break out of their cages. This is indeed observed [62]. As T, is approached on
cooling, a growing range of correlation can be detected in the monomer motion. The extent of
these correlations depends strongly on time; it is most pronounced in the late 8/early o regime
where g, (r, t) is distinctly larger than g (r) for distances up to several monomer diameters (cf
figure 24).

Functions similarto g, (r, t), replacing the particle displacements by particle overlap [215]
or density fluctuations [205], have recently been discussed.

4. Modelling the glass transition of polymer films

4.1. Introduction

A long-standing conjecture of the research on glasses is that the vitrification process is caused
by the growth of a correlation length &,. &, is supposed to measure—according to Adam and
Gibbs [221]—the average size of a subensemble whose constituent particles can rearrange into
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Figure 24. Displacement—displacement correlation function g, (r, ) and pair distribution function
g(r) versus r at T = 0.47 and t = 277.76. This time corresponds to the late §/early o regime (see
e.g. [66]). The inset shows the excess correlation I'(r) = [g, (r, 1)/g(r)] — 1 versus r. Apparently,
I'(r) does not tend to O if r approaches half of the box size (r — 5); it does so, however, for the
larger system (binary LJ mixture) studied in [216]. Thus, finite size effects cannot be excluded in
the present case [194]. This figure is adapted from [62].

a new configuration independently of the other particles surrounding them. Adam and Gibbs
referred to this subensemble as a ‘cooperatively rearranging region (CRR)’.

In modern terms, this conjecture may be supported as follows [19]: atlow 7', most particles
are ‘caged’ and mobility is sparse. A substantial rearrangement of particles—prerequisite to
the o relaxation—can only occur if a particle that moves at some time due to a thermal
fluctuation assists its neighbours to become mobile; the neighbours assist their neighbours in
their motion; and so on until particles are encountered whose motion cannot be (fully) excited.
This ‘dynamic facilitation’ [203—-205] naturally leads to the concept of a CRR. A CRR may
be viewed as a subensemble of particles over which mobility spreads on the timescale of the
a process. As the o timescale increases on cooling toward Ty, the average size &, of the CRR
should grow along with that, attaining a few nanometres at T, (cf e.g. figure 2.15g of [19]).

Study of glass formers in spatial confinement: expectations and complications. ~An appealing
approach to evidencing the existence of the CRRs and estimating their size appears to lie in
the study of the glass transition in spatial confinement. If there really is a correlation length
which grows on approaching 7, from above, it should be truncated by the finite dimension of
the confinement; and this should entail a faster dynamics compared to that of the bulk [19].
This perspective—in addition to the increasing technological interest in nanoscale
materials—can account for much of the recent activity in the research on geometrically
confined glass-forming systems [222,223]. Numerous experiments [103, 104, 126, 224-252],
computer simulations [70-73, 94, 253-272] and theoretical approaches [273-281]
have been deployed to reveal the phenomenology and the underlying mechanism
of the glass transition in spatially confined liquids. The systems investigated
range from simple liquids [94, 230, 266-268, 270, 272], over molecular and
hydrogen-bonded liquids [126, 224-229, 269, 271] to silica [265] and polymers
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[70-73, 103, 104, 231-264, 273, 274, 277, 279-281]. The geometries considered involve
three-dimensional cavities [228], pores [126, 224-229, 244, 245, 266, 269, 271, 281],
nanosized fillers embedded in glass-forming liquids [254, 255, 268] and thin films
[70-73, 94, 103, 104, 230-243, 246-253, 256-265, 267, 270, 272-281]. These results have
been the subject of recent topical reviews, either with a particular focus on polymer films
[104, 282] or providing a comprehensive overview of the field [283].

The broad-brush picture emerging from these studies is that the state of affairs is more
complicated than expected (or hoped). Glass formers confined to nanoscopic dimensions
display features which differ from the corresponding bulk behaviour not only due to spatial
restrictions, but also—and very often mostly—due to interfacial effects. These interfacial
effects may have different contributions. We mention three of them (for a fuller discussion see
e.g. [19, 283]):

e Interaction effects. It is natural to expect strong attractive particle—substrate interactions
to temporarily trap particles close to the confining walls. These particles may partly slow
down their neighbours which in turn obstruct the motion of their neighbours and so on.
This enables the wall-induced retardation to propagate into the core of the system. As
a result 7, should increase, particularly in strong confinement (narrow pores, ultrathin
films). Conversely, a vanishing attraction—that is, only repulsive interactions are at play,
as is e.g. the case at the polymer—air interface—should lead to a decrease of 7,. The
importance of the particle—substrate interaction was recognized early; this has led to a
number of studies which aimed at directly exploring this effect, e.g. for thin polymer films
(cf the reviews [104, 282, 283]).

e Impact on structure. The presence of an interface creates environments for nearby
particles, which differ from the local structure present in the bulk. For instance, we
may expect monomers located at a polymer—air interface to be more mobile because
they feel less steric constraints than a monomer in the bulk. This suggests that not
only interfacial interactions, but also structural aspects—modifications of the monomer
packing, changes of the local chain conformations [241] etc—may play an important role
for the understanding of the (glassy) dynamics in confinement.

e Density variations. The density of spatially confined glass formers need not necessarily
agree with that of the bulk. For instance, if the density steadily decreased with increasing
confinement (and this was the sole effect of the confinement [224, 225]), one would expect
to find a depression of 7. Confinement-induced changes of the density do not seem to be
an issue for thin polymer films [103, 283]; the glass transition in pores, however, provides
an example where such concerns may arise (see e.g. the careful study of molecular liquids
confined in highly regular mesopores [224, 225]).

Our contribution: computer simulations of polymer films. We attempt to contribute to this
research by means of simulations of model polymer films. Unlike our earlier Monte Carlo
studies of the bond fluctuation lattice model [28], reviewed in [33, 284], our more recent
work deployed MD simulations to explore the features of a continuum model, the Bennemann
model, spatially confined to a thin film geometry by smooth [70, 71, 73] or rough walls [72]
(cf sections 2.2 and 2.3).

This shift in the choice of the model—from the lattice to the spatial continuum—is
motivated by two aims: first, to avoid the discretization of space, the fingerprint of which
leaks out, especially for local interfacial properties and small film thicknesses; second, to
enable simulations at constant (normal) pressure [68, 69] (cf section 2.4) of a model that is
well characterized in the bulk (cf section 3).
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In the following, we shall be mainly concerned with equilibrium properties of polymer
films. For our simulations this limits the temperature regime to T > T.(h), T.(h) being the
critical temperature of MCT for a film of thickness z. The most extensive body of the data to
be presented will deal with the Bennemann model confined between two completely smooth,
purely repulsive walls (cf sections 2.2 and 2.3). We will explore film thicknesses (5 < /& < 20)
that are larger than the bulk radius of gyration (R, >~ 1.45). Results for other wall types—
crystalline and amorphous (cf section 2.3)—will be briefly discussed and compared with those
obtained for the smooth walls at the end of this section.

4.2. Polymer films between smooth walls: static properties

The discussion of section 3 suggests that a thorough knowledge of structural features provides
helpful information for analysing the dynamics of polymer melts. Close to a solid interface
the structure of the melt can markedly deviate from the behaviour found in the bulk [285].
This is pointed out from analytical approaches (see e.g. [286-293]) and computer simulations
of model systems (see e.g. [286, 287, 291-296]; for a survey of older work see e.g. [297]).
In this section, we describe the influence of purely repulsive walls (equation (4)) on structural
features of the Bennemann model. The presence of a wall breaks the translational symmetry
of the system. Two directions may be distinguished: the z direction perpendicular to the wall
and the directions parallel to it. We divide our discussion accordingly.

4.2.1. Structure perpendicular to the wall. In contrast to that for the bulk, the monomer
density in a film is not constant; it depends on the position 7 in space. The occurrence of the
spatial dependence results from the interplay of the monomer—wall and monomer—monomer
interactions (see e.g. [286, 287]).

We may obtain a qualitative understanding of the effect if we appeal to a simpler system:
a liquid of identical, pairwise interacting particles in contact with a wall (see e.g. [298] for a
detailed analysis of hard sphere systems). For such a system the (exact) first equation of the
Yvon-Born—Green (YBG) hierarchy relates the particle density p () at position 7 to the wall
potential Uy (7) and the pair interaction U (|r — 7’|) via [100, 119]

—kgT V, In p(r) = V, Uy(r) + / v pr)gr, v V. U(r — 7). (79)

This equation expresses the force balance at point r between the thermodynamic force
—kgT V, In p(r), the external force due to the wall and the force resulting from the interaction
of the tagged particle at ~ with all other particles in the system. The latter contribution depends
on the spatial structure of the inhomogeneous fluid, which is embodied by the pair distribution
function g(r, ). The term p(r')g(r, r’) is proportional to the probability of finding another
particle at ' provided that the tagged particle is at position 7.

In a homogeneous fluid, Uy, () = 0, and the density is constant. Then, the second term on
the rhs of equation (79) vanishes because the interaction forces that the particle at » experiences
are radially symmetric and thus compensate one another. However, a full compensation at any
7 is not possible in a spatially inhomogeneous system; for instance, in a film. Near the wall,
there are fewer particles to the left than to the right, implying an imbalance of the interaction
forces. An equilibrium of all forces can only be achieved by a spatial variation of the density.

Density profile averaged over all monomers. This mechanism also operates in our polymer
model. Figure 25 illustrates the effect for the thickest film (2 = 20) at various temperatures,
ranging from the high 7', normal liquid state to the supercooled state of the melt. The figure
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Figure 25. Temperature dependence of the monomer density profile pp (z) for & = 20 (~14Ry);
z is the distance of a monomer from the (left) wall. Since the profile is symmetric with respect
to the middle of the film, only one half is shown. zy, denotes the effective position of the wall at
T = 0.45 (equation (80)). The density profile is normalized by the bulk density py (7). The T
dependence of py, (T) is depicted in the inset for 0.46 < T < 1 (T, =~ 0.45; cf table 1); the dashed
line in the inset indicates the result py, (7)) = 1.1714 exp(—0.2603 T') from [65]. All simulation
results refer to the pressure p = 1.

depicts the monomer density profile pn,(z), i.e., the variation of the monomer density with
distance z from the wall. p,(z) vanishes for z < 1. The closest distance to which a monomer
may approach the wall slightly increases on cooling. We may understand this observation from
equation (79). A rough estimate of the distance of closest approach—that is, of the effective
wall position zy,—can be obtained if we neglect the interaction term and suppose that pp (z)
results only from Uy (z) = 1/z° (equation (4)). This gives

9
om(2) = Pm CXP|:—<Z?W) i| with zy, = 719 (80)

While the result for zy closely agrees with more refined estimates of the wall position,
incorporating the interactions between the monomers [68], the monotonically increasing
monomer profile predicted by equation (80) is not in accord with the simulation data (see
also figure 26). The full force balance leads to density oscillations: there is a high monomer
concentration at the wall which, due to the mutual repulsion of the monomers, reduces the
density in the adjacent layer; that in turn allows for an enhanced density in the following layer
and so on, until the bulk density py, is reached in the centre of the film. The bulk density
increases on cooling (inset of figure 25), a consequence of the simulation being carried out
at constant pressure. The increase of pp, reinforces the packing constraints in the film. This
gives rise to an amplification of the oscillations of py,(z) and, along with that, the decay of
Pm(2) becomes more long ranged.

The qualitative features of py(z) described are typical of liquids in contact with an
impenetrable wall [101, 298]; they are also found in theoretical and computational studies
of polymer films [286, 287, 289-291, 293, 296]. A convergence toward the bulk density in
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Figure 26. Main figure: various density profiles px(z) for h = 20 at T = 0.5. pn(z) is the
density profile averaged over all monomers of a chain, pj(z) the profile of the middle monomer
and p.(z) the profile of the end monomers. All profiles are divided by the respective bulk density
px (pm(T = 0.5) = 1.0291, p; = pm/N, pe = 2pm/N; N = 10). The dotted line indicates
equation (80); zy denotes the effective position of the wall at 7 = 0.5 (equation (80)). Inset:
dependence of pp, (z) on film thickness 4 for T = 0.5.

the centre of the film can, however, only be observed if the film thickness is large enough
[299-302]. Figure 26 illustrates this effect for our model. When 2 < 20 and p, ~ 1, the
density oscillations induced by the left and right walls propagate so deeply into the film that they
interfere in the middle. No bulk-like region then exists. Despite this interference, the density
oscillations close to the wall are only weakly—if at all—affected by the finite film thickness.

Density profiles of end and middle monomers. The density profile pn(z) aggregates
contributions from all monomers, irrespective of their specific location along the chain. This
averaging procedure levels site-specific differences. Apart from some dependence on chain
length that appears to saturate quickly [291, 303], pm (z) essentially resembles the profile of
simple liquids. A deeper insight into the conformational characteristics may be obtained by
recording density profiles of particular monomers, such as the profile of the end monomers
pe(z) or that of the middle monomer p;(z); or that of the centre of mass>.

Figure 26 depicts p;(z) and p.(z) for i = 20 and compares the profiles to py,(z). The
hallmarks of p;(z) and p.(z) are that the probability of finding the middle monomer at the wall
is suppressed with respect to pp, (z), whereas the concentration of end monomers is enhanced.
The large value of p.(z) at the wall entails a depression of chain ends compared to oy, (z) in
the next layer. Conversely, the small value of p;(z) at the wall leads to an enhancement of
middle monomers in this layer. The differences of the profiles still persist in the following

23 Here, we do not discuss in detail the profile of the chain’s centre of mass (COM). Qualitatively, one expects—and
one finds; see e.g. [287] or [297] and references therein—that the COM density vanishes on approaching a repulsive
wall. This is because, if a COM is located near the wall, many other monomers are also forced to lie close to it. This
strongly restricts the number of configurations that a chain may adopt. The attendant loss of configurational entropy
gives rise to a pronounced effective COM-wall repulsion. This idea has recently been substantiated by an analytical
determination of the COM profile for an ideal chain [288].
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layer, but then become negligible; the oscillations of p;(z) and p.(z) converge toward those
of pm(z). An enhancement of chain ends at the wall and a range of the oscillations of pe(z)
identical to that of pp,(z) are commonly found in simulation studies of model polymer films
(see e.g. [287, 300, 303]).

4.2.2. Structure parallel to the wall.  There are two ways of characterizing structural features
parallel to the wall: either by a layerwise resolution of the structure or by determining averages
over the film. We shall give examples for both approaches in the following.

Layer-resolved properties: pair distribution functions. Equation (79) suggests that a further
key quantity characterizing the structure of the confined polymer melt is the pair distribution
function g (7, 7;). This function measures the probability of finding a monomer at r, provided
that another monomer is at 7;. The planar geometry of the film naturally leads us to distinguish
between the z direction perpendicular to the wall and the parallel direction s = (x, y). Parallel
to the wall the system is bulk-like. So, only the distance s = |s, — s;| between the monomers
is important. Appealing back to the notation of section 3.2 the pair distribution function may
then be written as

_ 1 - z a b a b
g(s,21,22) = W< Z 25(3 —[sf — sj]) 8(11 - z,»)(S(zz - Zj)>, (81)

i,j=1 asb
where A denotes the area of the wall and r{ = (s¢, z{) is the position of monomer a in chain
i(a=1,...,N;i =1,...,n). The prefactor in equation (81) guarantees that g(s, z1, z2)

approaches 1 as s — 00.%

Figure 27(a) presents the influence of the wall, for # = 10 and T = 0.46, on the
pair distribution function for a layer at distance z. As z; = zp = z, we have s = r,
and so g(s, z1,22) = g(r,z). The figure reveals that, despite the strong structuration in
the perpendicular direction, the lateral structure of the melt is—at a qualitative level—only
weakly perturbed, even for the layer next to the wall. The pair distribution function has the
hallmarks of an amorphous structure: it displays a sequence of peaks whose amplitude rapidly
decreases toward 1. This reflects the short range order of the monomers that spatially organize
in nearest neighbour shells, as it is typical of the liquid state.

We thus find qualitative agreement between the layer-resolved g(r, z) and the g(r) of the
bulk. The agreement can even be quantitative if the layers lie in the centre of the film (cf the
inset of figure 27(a)). The layer in contact with the wall, however, displays differences at a
quantitative level: the peak at r = r, (bonded nearest neighbours) is sharper, that at r = rpp
(nonbonded nearest neighbours) is weaker than in the bulk; and the amplitudes of the following
oscillations diminish more rapidly. A further bit of information is provided by figure 27(b).
Quite generally, the pair distribution function can be decomposed into intrachain and interchain
parts (see e.g. equation (34) for such a decomposition). Figure 27(b) reveals that the peaks
at r = rpin and r &~ 2 are largely and those at » > 2 fully determined by the interchain part.
The depression of these peaks compared to those for the bulk is thus indicative of a weaker
intermolecular packing of the monomers near the wall. The intramolecular packing, on the
other hand, is enhanced close to the wall.

Averages over the film: static structure factors. The intermolecular packing—more precisely,
its reinforcement with decreasing 7—has been identified as a driving force for the slow, glass-

24 A detailed analysis of the site-resolved pair distribution function and of related quantities has been presented for
hard sphere systems in [298, 386].
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Figure 27. (a) The main figure shows for a film of thickness # = 10 at T = 0.46 the layer-resolved
pair distribution function g(r, z) (equation (81)). z denotes the distance of a monomer from the
wall; r is the distance between two monomers in direction parallel to the wall (for z; = z2 = z,
r = |ro—ry| = swherer| = (s1, z1) andry = (s2, z2); see the text for details). The perpendicular
distances z = 1.375 and 2.125 are close to the first and second peaks of the monomer density profile
pm(2) (cf the inset of figure 26); z = 5 corresponds to the centre of the film. The positions of
the bond length r, &~ 0.97 and of the minimum of the Lennard-Jones potential ryin =~ 1.12 (cf
section 2.2) are indicated by arrows. Inset: comparison of g(r, z) for the film centre (z = 5) with
the bulk g(r) at T = 0.46. (b) Comparison for z = 1.375 of the total g(r, z) with the intrachain
contribution (‘7 = j’ in equation (81)) and the interchain contribution (‘i # j’ in equation (81)).
As in panel (a), n = 10 and T = 0.46.

like dynamics of our model in the bulk (cfe.g. section 3.3.5). It is thus important to understand
how the presence of the walls affects key structural quantities, such as the intrachain structure
factor w(q) or the collective structure factor S(q)—both averaged over the film.

We exemplify this influence of the walls for 7 = 0.46 in figure 28. The figure compares
the bulk results for w(g) and S(g) with the corresponding structure factors obtained in a film
of thickness 4 = 5. (For the film, w(g) and S(g) are computed for wavevectors parallel to the
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wall, i.e., for {q = (g, ¢y, 0) | || = q}.) Two general features, which can also be observed
for other & and T, will be highlighted here:

(i) w(q) remains essentially unaltered by the confinement, at least for g > ¢*.2> On the other
hand, the confinement has a pronounced effect on S(g). This implies that it is mainly
the intermonomer packing that is affected when moving from the bulk to the thin film
geometry.

(ii)) The most prominent effect of the confinement on S(g) is that the amplitude of the
amorphous halo S(g*) is depressed with respect to that of the bulk.

These observations are important. The inset of figure 28 reminds us of what is relevant
for the glass-like dynamics in the bulk: it is the rise of S(g) in the g range around g*. This
rise reflects the tightening of the intermolecular packing of the monomers with decreasing 7'
(remember that w(g) remains unchanged on cooling; cf section 3.2). The influence of the walls
on S(g) thus appears to correspond to the influence that an increase of 7" has in the bulk. If this
correspondence— ‘decrease of 1 <> increase of 7T in the bulk’—carries over to the dynamics,
we should expect the films, for a given temperature, to relax faster than the bulk?®. We will
pursue this idea in the next section.

4.3. Dynamic properties of polymer films

The task of exploring the dynamics of polymer films can be accomplished in the same way
as the analysis of the structure. We may introduce quantities which measure the dynamics
perpendicular or parallel to the walls. Here, we have chosen to focus on the parallel direction,
mainly for the following reason. Motion in the perpendicular direction is restricted by the finite
film thickness—its asymptotic long time behaviour can be related to the structure of the film
in this direction [71]. By contrast, motion in the parallel direction is not bound, thus allowing
for a comparison of the long time dynamics in the film with the corresponding bulk system.

As for the structural features, we organize our presentation by discussing film-averaged
and layer-resolved quantities. We begin with the former.

4.3.1. Dynamic properties averaged over the film. ~Among the convenient quantities for
characterizing the dynamics are mean square displacements (MSDs)—for example, the MSD
of the middle monomer of a chain:

1) = ([rupp ) = rup OT). (82)

25 The extent to which confinement influences the intrachain structure factor on larger scales (¢ < ¢*) and the chain
dimension of long polymers has recently attracted a lot of interest (see e.g. [387] (theory), [294, 295] (simulations),
[388] (review)). Theory [387] and simulations [294, 295] suggest that there are residual excluded volume interactions
in confined melts, which affect the conformational features of the chains, while these interactions only have a (very)
weak influence on the radius of gyration measured parallel to the wall—except for ultrathin films (7 < Ry), they lead
to deviations from the classical ‘Kratky behaviour’ for w(g) already in the bulk.

26 There is a conspicuous qualitative similarity between the influence of confinement in our system and the effect of
short range attractions in colloidal suspensions. Hard sphere-like colloidal suspensions can undergo a glass transition if
the volume fraction of the particles ¢ exceeds a critical threshold ¢.. Addition of a weak short range attraction between
the particles can shift ¢ to larger values. The counterintuitive finding—attraction impedes instead of favouring glass
formation—is interpreted in the following way [364]: compared to the hard sphere case a weak attraction entails a
more inhomogeneous cage structure; the average distance between the particles decreases, and concomitantly, the
average size of the ‘holes’ increases. These inhomogeneities are reflected by changes of S(g) close to ¢*. The
amplitude of the first sharp diffraction peak decreases and the peak becomes broader [120, 366]. From the perspective
of MCT these changes are responsible for the shift of ¢, to larger values. The inhomogeneities induced by the walls
in our system appear to have a similar effect on S(g) and the dynamics.
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Figure 28. Main figure: collective structure factor S(q) and intrachain structure factor w(q) versus
g at T = 0.46 for the bulk and a film of thickness 7 = 5. For the film only wavevectors with
direction parallel to walls are utilized to calculate w(g) and S(g) (i.e., ¢ = (gx. gy, 0)). Inset: bulk
S(q) forT =0.46 and T = 1 (cf figure 5).

In figure 29 we compare g (¢) for various film thicknesses with the corresponding MSD of the
bulk. The temperature T = 0.46is close to the bulk critical temperature of MCT (7 =~ 0.45; cf
table 1). The bulk MSD thus increases in two steps (cf section 3.4): after the short time regime
of ballistic motion (g () ~ t2), there appears first the 8 relaxation, where g;(¢) is close to the
Lindemann localization length ., and then the « relaxation in which the monomer escapes
from its nearest neighbour cage and eventually crosses over to diffusive motion, g; = 6 Dt (D
is the diffusion coefficient). Final diffusion is preceded by a subdiffusive regime, originating
from chain connectivity, where g, (1) ~ 1% (cf equation (52)).

This scenario is altered in the films as regards the occurrence of the two-step relaxation.
The thinner the film, the more the two-step relaxation disappears and the faster g (¢) increases.
Apparently, a reduction of / at constant temperature has a comparable effect to an increase of
T in the bulk (cf the inset of figure 29).

Thus, we arrive again at the conclusion drawn before in the discussion of the static structure
factors (cf figure 28). There appears to be the correspondence: ‘decrease of i < increase of
T in the bulk’. If this is really so, how can we then turn this qualitative correspondence into a
workable analysis method for quantifying the effect?

One possibility is as follows. We presume that a film of thickness 4 at temperature 7
corresponds to a bulk system at a higher temperature 7*. 7 must be higher because the
dynamics of the film is faster than that of the bulk at the same temperature 7. We can
determine 7* by requiring that the film S(g) at 7" should agree with the bulk S(g) at T*.
The bulk temperature 7* helps us to estimate the critical temperature 7; (k) of the film: T*
is at distance AT = T* — T, from the bulk T;; so we impose T.(h) = T — AT. This
determination of 7.(h) amounts to the assumption that the features of the film change in the
same way on cooling as those of the bulk; all that the confinement does is delay the building
up of the intermolecular packing—and the attendant slowing down of the dynamics—to lower
temperatures.



R914 Topical Review

10 bulk
Wb, e R
= o Rg.nnnu .......
(S oo o T=0.6
10°g
. 2
10'F Re
= 10F
o 1i
10 F
g — h=20
10'2§— --- h=10
g h=5
-3 L [ NI ERSRNRATTT ARSERRRUTT AANRRTIT METNRRTIT MATRRTIT RANARRRTIT EANERRET |
102 10" 10° 10" 10° 10® 10* 10° 10°

t

Figure 29. Main figure: mean square displacement g (¢) of the middle monomer of a chain versus
t for the bulk and different film thicknesses % as indicated. The MSDs of the film are measured in
the direction parallel to the wall. The film data are multiplied by 3/2 to account for the different
numbers of spatial dimensions used in the calculation of g; (¢) (three for the bulk, two for the films).
For both the film and the bulk the temperature is 7 = 0.46. The behaviour in the ballistic (~12),
the polymer-specific (~1°93; cf equation (52)) and the diffusive regimes (~¢) are shown by solid
lines. The dotted horizontal lines depict 6;’52C (Lindemann localization length ry 2~ 0.095) and the
end-to-end distance Rg (=12.3). Inset: bulk g;(¢) versus t for 7 = 0.6 and T = 0.46. The dotted
horizontal lines indicate the bulk radius of gyration Ré (= 2.09) and the end-to-end distance RC2
(=12.3).

Figure 30 tests this conjecture for two films of thickness # = 10 and 20. The analysis
presupposes that we can find temperatures for which the structure factor of a film and of the bulk
coincide. Figure 30(a) provides an example: the bulk data for S(g) at 7 = 0.5 superimpose
on the film results at 7 = 0.44 (h = 10) and T = 0.46 (h = 20).?’ This agreement occurs,
according to the argument of the preceding paragraph, because the films and the bulk are at
the same distance AT from the respective critical temperature. With the bulk values 7* = 0.5
and 7. >~ 0.45 we find AT >~ 0.05, and so T.(h = 10) >~ 0.39 and T.(h = 20) >~ 0.41.

These estimates for 7.(